Issue |
A&A
Volume 502, Number 1, July IV 2009
|
|
---|---|---|
Page(s) | 37 - 43 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/200911961 | |
Published online | 04 June 2009 |
New constraints on the primordial black hole number density from Galactic γ-ray astronomy
1
Laboratoire AIM, CEA-Irfu/CNRS/Université Paris Diderot, Service d'astrophysique, CEA-Saclay, 91191 Gif-sur-Yvette, France e-mail: lehoucq@cea.fr
2
Institut d'Astrophysique, 98 bis boulevard Arago, 75014 Paris, France
Received:
27
February
2009
Accepted:
18
May
2009
Context. Primordial black holes are unique probes of cosmology, general relativity, quantum gravity and non standard particle physics. They open a new window on the very small scales in the early Universe and also can be considered as the ultimate particle accelerator in their last (explosive) moments since they are supposed to reach, very briefly, the Planck temperature.
Aims. Upper limits on the primordial black hole number density of mass = 51014 g, the Hawking mass (born in the big-bang terminating their life presently), is determined comparing their predicted cumulative γ-ray emission, galaxy-wise, to the one observed by the EGRET satellite, once corrected for non thermal γ-ray background emission induced by cosmic ray protons and electrons interacting with light and matter in the Milky Way.
Methods. A model with free gas emissivities is used to map the Galaxy in the 100 MeV photon range, where the peak of the primordial black hole emission is expected. The best gas emissivities and additional model parameters are obtained by fitting the EGRET data and are used to derive the maximum emission of the primordial black hole of the Hawking mass, assuming that they are distributed like the dark matter in the Galactic halo.
Results. The bounds we obtain, depending on the dark matter distribution, extrapolated to the whole Universe ( = 2.410-10 to 2.610-9) are more stringent than the previous ones derived from extragalactic γ-ray background and antiprotons fluxes, though less model dependent and based on more robust data.
Conclusions. These new limits have interesting consequences on the theory of the formation of small structures in the Universe, since they are the only constraint on very small scale density fluctuations left by inflation. Significant improvements by data gathered by the FERMI γ-ray satellite are expected in the near future. The interest of a generalisation of this work beyond the standard particle model and in extradimensions is briefly alluded.
Key words: gamma rays: observations / Galaxy: center / cosmology: dark matter / gamma rays: theory / black hole physics
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.