Issue |
A&A
Volume 501, Number 1, July I 2009
|
|
---|---|---|
Page(s) | 383 - 406 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/200911821 | |
Published online | 29 April 2009 |
Radiation thermo-chemical models of protoplanetary disks
I. Hydrostatic disk structure and inner rim
1
UK Astronomy Technology Centre, Royal Observatory, Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK e-mail: ptw@roe.ac.uk
2
School of Physics & Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, UK
3
Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands
4
SUPA (The Scottish Universities Physics Alliance.) , Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
Received:
10
February
2009
Accepted:
1
April
2009
Context. Emission lines from protoplanetary disks originate mainly in the irradiated surface layers, where the gas is generally warmer than the dust. Therefore, interpreting emission lines requires detailed thermo-chemical models, which are essential to converting line observations into understanding disk physics.
Aims. We aim at hydrostatic disk models that are valid from 0.1 AU to 1000 AU to interpret gas emission lines from UV to sub-mm. In particular, our interest lies in interpreting far IR gas emission lines, such as will be observed by the Herschel observatory, related to the Gasps open time key program. This paper introduces a new disk code called ProDiMo.
Methods. We combine frequency-dependent 2D dust continuum radiative transfer, kinetic gas-phase and UV photo-chemistry, ice formation, and detailed non-LTE heating & cooling with the consistent calculation of the hydrostatic disk structure. We include Fe ii and CO ro-vibrational line heating/cooling relevant to the high-density gas close to the star, and apply a modified escape-probability treatment. The models are characterised by a high degree of consistency between the various physical, chemical, and radiative processes, where the mutual feedbacks are solved iteratively.
Results. In application to a T Tauri disk extending from 0.5 AU to
500 AU, the models show that the dense, shielded and cold
midplane (,
) is surrounded by a
layer of hot (
K) and thin
(
to
) atomic gas
that extends radially to about 10 AU and vertically up to
. This layer is predominantly heated by the
stellar UV (e.g. PAH-heating) and cools via Fe ii semi-forbidden
and Oi 630 nm optical line emission. The dust grains in this
“halo” scatter the starlight back onto the disk, which affects
the photochemistry. The more distant regions are characterised
by a cooler flaring structure. Beyond
AU,
decouples from
even in the midplane and reaches values of
about
.
Conclusions. Our models show that the gas energy balance is the key to
understanding the vertical disk structure. Models calculated with the
assumption show a much flatter disk structure. The
conditions in the close regions (<
AU) with densities
to
resemble those
of cool stellar atmospheres and, thus, the heating and cooling is
more like in stellar atmospheres. The application of heating and
cooling rates known from PDR and interstellar cloud research alone
can be misleading here, so more work needs to be invested to identify
the leading heating and cooling processes.
Key words: astrochemistry / radiative transfer / methods: numerical / stars: formation / stars: circumstellar matter
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.