Issue |
A&A
Volume 501, Number 1, July I 2009
|
|
---|---|---|
Page(s) | 61 - 73 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/200810878 | |
Published online | 05 May 2009 |
The cluster gas mass fraction as a cosmological probe: a revised study*
1
INAF, Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: stefano.ettori@oabo.inaf.it
2
INFN, Sezione di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy
3
Dipartimento di Astronomia, Università di Bologna, via Ranzani 1, 40127 Bologna, Italy
4
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
5
INAF, Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131 Trieste, Italy
6
INFN, Sezione di Trieste, 34100 Trieste, Italy
7
MPE, Karl-Schwarzschild-Str. 2, 85741 Garching, Germany
8
Dipartimento di Astronomia, Università di Trieste, via Tiepolo 11, 34131 Trieste, Italy
9
ESO, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
10
Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
Received:
29
August
2008
Accepted:
28
March
2009
Context. We present the analysis of the baryonic content of 52 X-ray luminous galaxy clusters observed with Chandra in the redshift range 0.3–1.273.
Aims. Our study aims at resolving the gas mass fraction in these objects to place constraints
on the cosmological parameters ,
and the ratio between the
pressure and density of the dark energy, w.
Methods. We deproject the X-ray surface brightness profiles to recover the gas mass profiles and fit a single thermal component to the spectrum extracted from a region around the cluster that maximizes the signal-to-noise ratios in the observation. The measured values of the gas
temperature are used to evaluate the temperature profile with a given functional form and to estimate the total gravitating mass in combination with the gas density profiles. These measured quantities are then used to statistically estimate the gas fraction and the
fraction of mass in stars. By assuming that galaxy clusters are
representative of the cosmic baryon budget, the distribution of the
cluster baryon fraction in the hottest ( keV)
systems as a function of redshift is used to constrain the
cosmological parameters. We discuss how our constraints are
affected by several systematic effects, namely the isothermality, the assumed baryon
fraction in stars, the depletion parameter and the sample selection.
Results. By using only the cluster baryon fraction as a proxy for the cosmological parameters, we obtain that is very well constrained at the value of 0.35 with a relative statistical uncertainty of 11% (1σ level;
) and a further systematic error of about
%. On the other hand, constraints on
(without the prior of flat geometry) and w (using the prior of flat geometry) are definitely weaker due to the presence of greater statistical and systematic uncertainties (of the order of 40 per cent on
and greater than 50 per cent on w).
If the WMAP 5-year best-fit results are assumed to fix the cosmological parameters,
we limit the contributions expected from non-thermal pressure support
and ICM clumpiness to be lower than about 10 per cent,
also leaving room to accommodate baryons not accounted for either
in the X-ray emitting plasma or in stars of the order
of 18 per cent of the total cluster baryon budget.
This value is lowered to zero for a no-flat Universe with
.
Key words: galaxies: clusters: general / galaxies: fundamental parameters / intergalactic medium / X-rays: galaxies: clusters / cosmology: observations / dark matter
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.