Issue |
A&A
Volume 500, Number 3, June IV 2009
|
|
---|---|---|
Page(s) | 1281 - 1285 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/200911824 | |
Published online | 13 May 2009 |
Research Note
Design, analysis, and testing of a microdot apodizer for the apodized pupil Lyot coronagraph
II. Impact of the dot size
1
European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany e-mail: martinez@eso.org
2
Aktiwave, 241 Ashley drive, Rochester, NY 14620, USA
3
LESIA, Observatoire de Paris Meudon, 5 pl. J. Janssen, 92195 Meudon, France
4
LAM, Laboratoire d'Astrophysique de Marseille, 38 rue Frédéric Joliot Curie, 13388 Marseille Cedex 13, France
Received:
11
February
2009
Accepted:
10
April
2009
Context. The Apodized Pupil Lyot Coronagraph (APLC) is a promising coronagraphic device for direct exoplanet detection with the European Extremely Large Telescope. This concept features amplitude apodization in the entrance aperture, and a small opaque Lyot mask in the focal plane. We present new near-IR laboratory results using binary apodizers – the so-called microdot apodizer – which represent a very attractive and advantageous solution for the APLC.
Aims. Microdot apodizers introduce high-frequency noise whose characteristics depend on the pixel size. The aim of this work is to characterize the impact of the pixel size on the coronagraphic image. We aim to estimate both the noise intensity and its localization in the field of view.
Methods. The microdot apodizer, consisting of an array of pixels with spatially variable density that are either opaque or transparent, was manufactured by lithography of a light-blocking metal layer deposited on a transparent substrate. A set of 5 masks has been designed with different pixel sizes, tested in the near-IR, and their behavior compared to theoretical models.
Results. Stray light diffraction introduced by the finite pixel size was measured during experiments. The intensity decreases, and radial distance increases, when the pixel size gets smaller.
Conclusions. The physical properties of these microdot apodizers have been demonstrated in the laboratory. The microdot apodizer is a suitable solution for any coronagraph using pupil amplitude apodization, if properly designed.
Key words: techniques: high angular resolution / instrumentation: high angular resolution / telescopes
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.