Issue |
A&A
Volume 496, Number 3, March IV 2009
|
|
---|---|---|
Page(s) | 619 - 635 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/200811100 | |
Published online | 09 February 2009 |
Time-dependent corrections to the Ly α escape probability during cosmological recombination
1
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching bei München, Germany e-mail: jchluba@mpa-garching.mpg.de
2
Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia
Received:
7
October
2008
Accepted:
10
November
2008
We consider the effects connected with the detailed radiative transfer during the epoch of cosmological recombination on the ionization history of our Universe.
We focus on the escape of photons from the hydrogen Lyman α resonance
at redshifts , one of two key mechanisms
defining the rate of cosmological recombination. We approach this problem within the standard formulation, and corrections due to two-photon interactions are deferred to another paper.
As a main result we show here that within a non-stationary approach to the
escape problem, the resulting correction in the free electron fraction,
, is about ~1.6–1.8% in the redshift range
.
Therefore the discussed process results in one of the largest modifications to
the ionization history close to the maximum of Thomson-visibility function at
considered so far.
We prove our results both numerically and analytically, deriving the escape
probability, and considering both Lyman α line emission and line absorption in a way different from the Sobolev approximation.
In particular, we give a detailed derivation of the Sobolev escape
probability during hydrogen recombination, and explain the underlying
assumptions.
We then discuss the escape of photons for the case of coherent
scattering in the lab frame, solving this problem analytically in the quasi-stationary approximation and also in the time-dependent case.
We show here that during hydrogen recombination the Sobolev approximation for
the escape probability is not valid at the level of
–10%.
This is because during recombination the ionization degree changes
significantly over a characteristic time
, so that at
percent level accuracy the photon distribution is not evolving along a
sequence of quasi-stationary stages.
Non-stationary corrections increase the effective escape by
at
, and decrease it by
close to
the maximum of the Thomson-visibility function.
We also demonstrate the crucial role of line emission and absorption in
distant wings (hundreds and thousands of Doppler widths from the resonance) for this effect, and argue that the final answer probably can only be given within a more rigorous formulation of
the problem using a two- or multi-photon description.
Key words: radiative transfer / cosmology: cosmic microwave background / cosmology: early Universe / cosmology: theory / atomic processes / cosmology: cosmological parameters
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.