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ABSTRACT

We consider the effects connected with the detailed radiative transfer during the epoch of cosmological recombination on the ionization
history of our Universe. We focus on the escape of photons from the hydrogen Lyman α resonance at redshifts 600 � z � 2000, one
of two key mechanisms defining the rate of cosmological recombination. We approach this problem within the standard formulation,
and corrections due to two-photon interactions are deferred to another paper.
As a main result we show here that within a non-stationary approach to the escape problem, the resulting correction in the free electron
fraction, Ne, is about ∼1.6–1.8% in the redshift range 800 � z � 1200. Therefore the discussed process results in one of the largest
modifications to the ionization history close to the maximum of Thomson-visibility function at z ∼ 1100 considered so far.
We prove our results both numerically and analytically, deriving the escape probability, and considering both Lyman α line emission
and line absorption in a way different from the Sobolev approximation. In particular, we give a detailed derivation of the Sobolev
escape probability during hydrogen recombination, and explain the underlying assumptions. We then discuss the escape of photons
for the case of coherent scattering in the lab frame, solving this problem analytically in the quasi-stationary approximation and also
in the time-dependent case. We show here that during hydrogen recombination the Sobolev approximation for the escape probability
is not valid at the level of ΔP/P ∼ 5–10%. This is because during recombination the ionization degree changes significantly over
a characteristic time Δz/z ∼ 10%, so that at percent level accuracy the photon distribution is not evolving along a sequence of
quasi-stationary stages. Non-stationary corrections increase the effective escape by ΔP/P ∼ +6.4% at z ∼ 1490, and decrease it by
ΔP/P ∼ −7.6% close to the maximum of the Thomson-visibility function. We also demonstrate the crucial role of line emission and
absorption in distant wings (hundreds and thousands of Doppler widths from the resonance) for this effect, and argue that the final
answer probably can only be given within a more rigorous formulation of the problem using a two- or multi-photon description.

Key words. radiative transfer – cosmology: cosmic microwave background – cosmology: early Universe – cosmology: theory –
atomic processes – cosmology: cosmological parameters

1. Introduction

The extraordinary advances in observations of the Cosmic
Microwave Background (CMB) temperature and polarization
angular anisotropies (e.g. Page et al. 2006; Hinshaw et al. 2006)
and the prospects with the planck Surveyor1 have motivated
several groups to re-examine the problem of cosmological re-
combination (e.g. see Sunyaev & Chluba 2007; Fendt et al. 2008,
for detailed overview), including subtle physical processes dur-
ing hydrogen (e.g. see Dubrovich & Grachev 2005; Chluba &
Sunyaev 2006b; Kholupenko & Ivanchik 2006; Rubiño-Martín
et al. 2006; Chluba & Sunyaev 2007; Hirata 2008) and he-
lium recombination (e.g. see Switzer & Hirata 2008a,b; Hirata
& Switzer 2008; Kholupenko et al. 2007; Wong & Scott 2007;
Rubiño-Martín et al. 2008; Kholupenko et al. 2008). It has been
argued that percent level corrections to the ionization history ex-
ist, which should be taken into account for future determinations
of cosmological parameters using CMB data obtained with the
planck Surveyor.

In this paper we investigate the validity of one of the
key simplifications used for computations of the hydrogen re-
combination history within existing multi-level recombination

1 www.rssd.esa.int/Planck

codes: the Sobolev approximation for the escape of Lyman α
photons from the center of the resonance. With this approxima-
tion it is possible to separate the problem of the evolution of the
photon field and the populations of the hydrogen atom.

Originally the Sobolev approximation was developed in or-
der to describe the escape of photons from finite expanding en-
velopes of planetary nebulae and stars (Sobolev 1960), but it has
been shown that even for cosmological applications, i.e. infinite
slowly expanding media, it is very useful (Grachev & Dubrovich
1991; Hummer & Rybicki 1992; Rybicki & dell’Antonio 1994).
It gives the same answer as less sophisticated methods, based
on simple solutions of the integral or differential equations of
radiative transfer, which were used to solve the cosmological
hydrogen recombination problem in the 1960s (Varshalovich &
Syunyaev 1968; Zeldovich et al. 1968; Peebles 1968). Both for
the Sobolev approximation and these simpler derivations the
main assumptions are: (i) the properties of the medium (e.g.
ionization degree, density, expansion rate) do not change much
while the photons interact strongly with the Lyman α resonance
and (ii) each scattering leads to a complete redistribution of pho-
tons over the whole line profile.

Due to assumption (i) it is possible to approximate the evo-
lution of the photon distribution as quasi-stationary, which for
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conditions in our Universe seems to be reasonable (Rybicki &
dell’Antonio 1994). However, up to what level of accuracy re-
mains a difficult question and deserves further investigations.
On the other hand, assumption (ii) is much less justified, since
complete redistribution requires some process that destroys the
coherence in the resonance scattering event. This is usually
done by collisional processes, which for the conditions in our
Universe are extremely inefficient (e.g. see Chluba et al. 2007).
We will demonstrate here that for present day experimental re-
quirements, i.e. sub-percent level accuracy in the theoretical pre-
dictions of the CMB power spectra at large multipoles l (e.g. see
Seljak et al. 2003), both approximations become insufficient.

In order to understand this problem, it is important that the
ionization degree during cosmological hydrogen recombination
changes with characteristic time Δz/z ∼ 10%. Also, it is clear
that photons, which are released in the distant wings of the
Lyman α line2, can in principle travel, scatter, and redshift for
a very long time until being reabsorbed. Here it is important to
distinguish between line scattering events, and line emission and
absorption processes. The former only lead to a redistribution
of photons over frequency, but no net change in the ionization
degree, while the latter (which for example are connected with
direct transitions of electrons between the continuum and the
2p state) are able to change the number of Lyman α photons,
and hence the ionization degree. Note that during hydrogen re-
combination, line absorption occurs with much lower probabil-
ity (∼10−4–10−3) than line scattering, so that photons only die
or disappear effectively rather close to the line center (within a
few ten to hundred Doppler widths from the resonance), while in
the distant wings they mainly scatter. In addition, every photon
that was absorbed (or died) will be replaced by a new photon in a
line emission event after a very short time. The profile of this line
emission is usually described by a Voigt profile, so that the com-
bination of line absorption followed by a line emission appears
to lead to a complete redistribution of photons over the whole
Lyman α line profile. However, from the microscopic point of
view this is not a scattering event 3.

As explained in Rybicki & dell’Antonio (1994), in the ex-
panding Universe the redistribution of photons due to Lyman α
resonance scattering is more accurately described by so-call
type-II redistribution (Hummer 1962) rather than by complete
redistribution. In the former case the photon scatters coherently
in the rest-frame of the atom, so that the changes in the ener-
gies of the photon after the scattering event are related to the
motion of the atom. Studying this type of redistribution pro-
cess in detail is beyond the scope of this paper, but our com-
putations (Chluba & Sunyaev 2009b), in very good agreement
with earlier works (e.g. see Rybicki & dell’Antonio 1994), show
that in a time-dependent formulation of the problem, including
Doppler broadening, atomic recoil and stimulated emission4,
the actual solution for the scattered photon distribution is very
close to the one in the case of no redistribution, or equiva-
lently no line scattering. Here we show in addition that the as-
sumption of complete redistribution leads to several unphysical
conclusions, both in the quasi-stationary approximation and a

2 At redshift z = 1100 a thousand Doppler width corresponds to
Δν/ν ∼ 2%, a distance from the line center that can be passed by red-
shifting in Δz/z ∼ 2%.
3 Switzer & Hirata (2008a) also make this distinction using the termini
of incoherent processes and coherent scattering.
4 Within a Fokker-Planck approach the atomic recoil effect was first
included by Basko (1978), while the effect of stimulated emission was
only taken into account very recently by Rybicki (2006).

time-dependent approach. This is due to the very peculiar condi-
tions in our Universe, where collisional processes are not impor-
tant, and in particular where due to the low Hubble expansion
rate, the Sobolev optical depth reaches extreme values of ∼106–
108 during recombination.

We therefore investigate the evolution of the photon field in
the no-scattering approximation and show that time-dependent
corrections to the effective escape probability are important at
the level of ∼5%–10% (see Sect. 3.4, Figs. 5 and 8). As men-
tioned above, this is due to the fact that in the distant wings of the
Lyman α resonance photons mainly scatter, but do not disappear.
This renders it important to include changes in the ionization de-
gree and photon emission rate during the evolution of the photon
field in the computations, implying that the quasi-stationary ap-
proximation becomes inaccurate. Both changes in the absorption
optical depth and the effective emission rate cannot be neglected.
The corresponding time-dependent changes in the free electron
fraction, which are important for the Thomson visibility function
and in computations of the CMB power spectra, reach the level
of ∼1.6–1.8% in the redshift range 800 � z � 1200 (see Sect. 4
and Fig. 12), and therefore are about 2 times as large as those
due to atomic recoil, recently studied by Grachev & Dubrovich
(2008). Taking the time-dependent correction investigated here
into account will therefore be very important for the analysis of
future CMB data from the planck Surveyor.

We also briefly discuss another aspect of the Sobolev ap-
proximation, which is connected to the shape of the Lyman α
line profile (see Sect. 3.5). In the Sobolev approximation there
is no direct dependence of the Sobolev escape probability on the
shape of the line emission, absorption, and scattering profiles, as
long as all are identical. Our derivation also clearly shows this
point (cf. Sects. 3.2 and 3.5). Therefore, in principle it does not
matter if the profile is assumed to be a Lorentzian, a Voigt pro-
file, a pure Doppler profile, or a δ function. It also turns out that
in the no line scattering approximation this is true, as long as the
line emission and absorption profiles are identical, and the evo-
lution of the photon distribution is quasi-stationary (cf. Sects. 3.3
and 3.5).

However, if one includes the deviations from quasi-
stationarity, then the result does depend in detail on the Lyman α
profile, even if the line emission and absorption profiles still are
the same. For example, in the case of a pure Doppler profile (very
narrow), the problem of the Lyman α photon escape from the
resonance due to the expansion of the Universe would be prac-
tically quasi-stationary, and the Sobolev approximation should
be applicable. This is because the number of photons emitted
and absorbed in the optically thin region of the Lyman α line is
exponentially small, and all the transfer is happening inside the
Doppler core, corresponding to Δν/ν ∼ few × 10−5.

On the other hand in the real problem, Lyman α emission and
absorption also occurs in the distant Lorentz wings (at hundreds
and thousands of Doppler widths) of the resonance. As we show
here, at a percent level the number of these photons is very im-
portant for the value of the effective escape probability (e.g. see
Fig. 10). This shows that it is crucial to understand the profiles
(or cross-sections) of the considered processes in more detail,
and for this probably a formulation in the two- or multi-photon
picture will become necessary. Also in principle it should be pos-
sible to distinguish between different redistribution processes for
the line scattering event, by measuring the shape and position of
the residual, present day CMB Lyman α distortion.

It is extremely impressive that the standard estimates of the
Lyman α escape probability, which were used in the first papers
on cosmological recombination, and the Sobolev approximation



J. Chluba and R. A. Sunyaev: Time-dependent corrections to the Ly α escape probability during cosmological recombination 621

give such precise (better than 5–10%) answers, even though they
are based on two incorrect assumptions as mentioned above. It is
well known that the principal difference (from a physical point
of view) between the cases of partial and complete redistribu-
tion does not influence the final result very much in the majority
of astrophysical applications (Ivanov 1973). However, the enor-
mous requirements of accuracy of theoretical estimates in the era
of precise cosmology change the situation, and force us to search
for percent level corrections to the escape of Ly α photons from
resonance during the epoch of cosmological recombination.

2. Transfer equations for the photon field

In this section we provide the transfer equation describing
the evolution of the photon distribution in the vicinity of the
Lyman α resonance. We include the effect of line emission and
line absorption in the expanding Universe for the cases of co-
herent line scattering in the lab frame, and complete redistribu-
tion. Here we envision all processes as 1 + 1 photon processes,
as in the Seaton-cascade description (Seaton 1959), but leave
the treatment of correction due to two-photon interactions for
a future paper. Also the effects of partial frequency redistribu-
tion will be discussed in separate paper. In Sects. 2.3 and 2.4 we
give the time-dependent solutions of these equations. We will
use these results in Sect. 3 to deduce the Lyman α escape prob-
ability, which then can be utilized to estimate the corrections to
the cosmological ionization history.

2.1. General kinetic equation for the photon field

To follow the evolution of the photon field in the expanding
Universe we start with the kinetic equation for the function Nν =
Iν/hν, where Iν is the physical specific intensity of the isotropic,
ambient radiation field (e.g. see Rybicki & dell’Antonio 1994):

1
c

[
∂Nν
∂t

∣∣∣∣∣
ν
+ 2HNν − H ν

∂Nν
∂ν

∣∣∣∣∣
t

]
= C[Nν] . (1)

Here H(z) is the Hubble parameter as a function of redshift z
and C[Nν] is the collision term, which describes the emission,
absorption and frequency redistribution processes.

In order to simplify the left hand side of the Eq. (1) we trans-
form to the frequency variable x = ν/(1 + z), so that

Nν =
dx
dν

Nx =
Nx

(1 + z)
· (2)

Inserting this into Eq. (1) yields

1
c

[
∂Nx

∂t

∣∣∣∣∣
ν
+ 3HNx − H x

∂Nx

∂x

∣∣∣∣∣
t

]
= (1 + z)C[Nν] . (3)

To obtain dNx/ dt|ν one can use the total differential of Nx

dNx =
∂Nx

∂t

∣∣∣∣∣
x

dt +
∂Nx

∂x

∣∣∣∣∣
t

dx (4)

which with dx/ dt|ν = x H then gives

∂Nx

∂t

∣∣∣∣∣
ν
=
∂Nx

∂t

∣∣∣∣∣
x
+ H x

∂Nx

∂x

∣∣∣∣∣
t
· (5)

Inserting this into Eq. (3) one finds

1
c

[
∂Nx

∂t

∣∣∣∣∣
x
+ 3HNx

]
= (1 + z)C[Nν]· (6)

Here the redshifting term was absorbed due to the choice of the
frequency variable.

The term 3HNx can be eliminated using the substitution
Ñx = Nx/(1 + z)3 ≡ Nν/(1 + z)2, so that Eq. (1) takes the form

1
c
∂Ñx

∂t

∣∣∣∣∣∣
x

=
C[Nν]

(1 + z)2
. (7)

One can easily verify that in the absence of physical interactions
(C[Nν] ≡ 0), in spite of the Hubble expansion, a Planckian spec-
trum is not modified (e.g. see Padmanabhan 2002), so that it is
always possible to directly write

1
c
∂Ñx

∂t

∣∣∣∣∣∣
x

≡ 1
c
∂ΔÑx

∂t

∣∣∣∣∣∣
x

, (8)

where ΔÑx = Ñx − ÑPl
x is the corresponding deviation of the

spectrum from a blackbody, which in our coordinates reads

Ñpl
x =

2
c2

x2

ehx/kT0 − 1
· (9)

Here T0 = 2.725 K is the CMB temperature today (Fixsen &
Mather 2002).

2.2. Line emission and line absorption

Although for conditions in the Universe during cosmological re-
combination5 the resonant scattering optical depth close to the
Lyman α line center exceeds unity by several orders of magni-
tude, only real line emission and absorption lead to a net change
of the photon number. If we consider an electron in the ground
state of hydrogen which after the absorption of a photon (say
close to the Lyman α resonance) is excited to the 2p state, then
there are two routes out of this level: (i) it can directly decay back
to the ground state, re-emitting a photon with (slightly) changed
frequency, depending on the considered redistribution process,
or (ii) it can be further excited to the continuum or higher shells
(n > 2) by the subsequent absorption of a blackbody photon
from the CMB. Only in case (ii) does the number of Lyman α
photons really change, while for (i) the photon simply was scat-
tered.

To describe this aspect of the problem, we use the death
probability or single scattering albedo, pd, which specifies what
fraction of photons that interact with a hydrogen atom in the
1s state, will really disappear from the photon distribution. The
scattering probability, psc = 1 − pd, will then give the fraction
of photons that reappear at a different frequency, and hence only
underwent a scattering rather than a real line absorption.

2.2.1. Death probability or single scattering albedo

Including all possible ways in and out of the 2p level, the net
change in the number density of electrons in the 2p level can be
written as

dN2p

dt
+ 3HN2p =

dN2p

dt

∣∣∣∣∣∣
Ly−α

2p

+ R+2p − R−2pN2p, (10)

5 Electron and proton collisions are negligible in comparison with
radiative processes, like photorecombination or photoionization, and
bound-bound dipole transitions (e.g. see Chluba & Sunyaev 2008).
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where dN2p

dt

∣∣∣∣Ly−α
2p

denotes the contribution from the Lyman α tran-

sition, which we will specify below (see Sect. 3.1), and

R−2p = R2pc +
∑
i>2p

gi

g2p
Ai2p npl(νi2p) (11a)

R+2p = Ne Np Rc2p +
∑
i>2p

Ni Ai2p [1 + npl(νi2p)]. (11b)

Here Ne and Np are the electron and proton number densities,
and npl = 1/(ehν/kTγ − 1) is the blackbody photon occupation
number, where Tγ = T0 (1 + z) is the CMB temperature at red-
shift z. Furthermore, Ai2p denotes the spontaneous dipole tran-
sition rate from level i to the 2p state, νi2p the corresponding
transition frequency, and gi the statistical weight of level i. Rc2p
and R2pc are the photorecombination and photoionization coeffi-
cients of the 2p state, which are computed assuming that the am-
bient radiation field is Planckian. Since except for the Lyman se-
ries and the 2s-1s two-photon transition, the emission of photons
during cosmological hydrogen recombination only produces tiny
deviations of the photon distribution from a blackbody spec-
trum Bν (e.g. see Chluba & Sunyaev 2006a), this approxima-
tion is possible. Similarly, we have neglected the spectral dis-
tortion in the terms due to transitions from and to higher levels
(Ai2p nν ≈ Ai2p npl

ν ), so that R−2p becomes completely independent
of the solution for the photon field. However, note that R+2p still
depends on the solution for the populations, Ni, of the excited
levels, and the electron and proton number density.

Omitting electron and proton collisions, the total probability
for Lyman α emission pem is therefore given by

pem =
A21

A21 + R−2p

, (12)

where A21 = 6.27 × 108 s−1 is the spontaneous 2p–1s transition
rate. The corresponding probability for the death of photons, i.e.
removal of Lyman α photons or return of 2p electrons to the
continuum or higher levels, is then given by pd = 1 − pem.

Note that in Eq. (12) we directly neglected the effects of
stimulated emission. This approximation is well justified, since
close to the Lyman α transition the photon occupation number
nν =

c2 Iν
2hν3 � 1 at all relevant redshifts.

In Fig. 1 we show the death probability, pd, as a function
of redshift considering a 2, 3 and 10 shell hydrogen atom. It is
clear that the largest contribution to the death probability comes
from the third shell, and cases with n ≥ 3 are practically indistin-
guishable. This is because during cosmological hydrogen recom-
bination R2pc � 1

3 [A3s2p+5 A3d2p] npl(ν3s2p), and since npl(ν3s2p),
for n > 3, is exponentially larger than npl(νns2p), so that also
[A3s2p+5 A3d2p] npl(ν3s2p) � [Ans2p+5 And2p] npl(νns2p). This fact
implies that for a consistent investigation of the Lyman α escape
problem, one should include at least 3 shells in the computations.

2.2.2. Line emission profile

The form of the emission profile for the Lyman α line (under the
assumption of complete redistribution) is known from quantum-
mechanical considerations. Including the thermal motion of the
hydrogen atoms it is usually described using the so-called Voigt
profile:

ϕ(ν) =
a

π3/2 ΔνD

∫ ∞

−∞
e−t2

dt
a2 + (xD − t)2

=
φ(ν)
ΔνD
, (13a)
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Fig. 1. Different probabilities for the cosmological hydrogen recombi-
nation problem as a function of redshift. The death probabilities, pd,
for a 2, 3 (dashed lines), and 10 shell hydrogen atom (dotted line) are
shown. The death probability for the 3 shell case already practically
coincides with the death probability for the 10 shell case. The solid
lines show different escape probabilities. PS = [1 − e−τS ]/τS denotes
the normal Sobolev escape probability, while Pd = [1− e−τd ]/τd, where
τd = pd τS. To compute τS we used the recfast solution for N1s.

where for the H i Lyman α transition the Voigt parameter, a, the
Doppler width of the line due to the thermal motion of the hy-
drogen atoms, ΔνD, and the variable xD are defined by

a =
A21

4πΔνD
≈ 8.61 × 10−4

[
(1 + z)
1100 χ

]−1/2

(13b)

ΔνD
ν21

=

√
2kBTe

mHc2
≈ 2.35 × 10−5

[
(1 + z)
1100 χ

]1/2

(13c)

xD =
ν − ν21

ΔνD
· (13d)

Here ν21 ≈ 2.47 × 1015 Hz is the Lyman α transition frequency
and χ = Tγ/Te.

The Voigt profile is normalized such that
∫ ∞

0
ϕ(ν)
4π dν dΩ ≡ 1

and it has the well known limiting cases

φ(ν) ≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a
πx2

D
for |xD| � 10

N e−x2
D√
π

for xD ∼ 0
, (14)

with N = ea2
Erfc(a) ≈ 1 – 2a/

√
π + a2 for a � 1 and where

Erfc(x) denotes the complementary error function.
In addition, on the red side of the resonance one can approx-

imate the integral χ =
∫ ν

0
φ(ν′) dν′ by

χwings ≈ 2.73 × 10−6

[
(1 + z)
1100 χ

]−1/2 [ xD

−100

]−1
, (15)

as long as −ν21/ΔνD � xD � −10. This formula shows that
only a very small fraction of photons is directly emitted in the
distant wings. However it is also known that escape of photons
from the Doppler core is extremely strongly suppressed. As a
result the emission of the photons in the distant wings should be
considered carefully.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811100&pdf_id=1
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2.2.3. Line emission term

With the definitions given above, the term for real emission of
photons due the addition of fresh electrons to the 2p state can be
written as

1
c

dNν
dt

∣∣∣∣∣em

Ly−α
= pem

φ(ν)
4πΔνD

× R+2p . (16)

The emission probability, pem, is defined in Eq. (12). Again we
have neglected the factors related to stimulated emission.

For Eq. (16) we have assumed that the emission profile for
every new electron that was added to the 2p state is given by
Eq. (13), regardless of whether the electron came from the con-
tinuum or from some excited state. In the absence of collisions
(a very good approximation for the expanding Universe) this is
the standard approach, in which fresh electrons, i.e. those that
have not reached the 2p state by a line scattering event, lead
to a natural excitation of the 2p state (e.g. see p. 433 Mihalas
1978). Note that this also implicitly means that any transition of
electrons from the 2p state to higher levels effectively leads to a
complete redistribution of photons in the Lyman α line.

One does expect some corrections related to these approxi-
mations, since even for the real line emission process the history
of the electron should matter (e.g. due to two-photon processes
Chluba & Sunyaev 2008). However, this problem is beyond the
scope of this paper.

2.2.4. Line absorption term

In the standard formulation (e.g. see Mihalas 1978, p. 278) the
profile for real line absorption is usually assumed to have the
same shape as the natural emission profile 13. In this case, using
the death probability pd, the term for real line absorption reads

1
c

dNν
dt

∣∣∣∣∣abs

Ly−α
= pd hν21 B12 N1s

φ(ν)
4πΔνD

Nν . (17)

Here N1s is the number density of hydrogen atoms in the ground
state, and B12 is the Einstein coefficient for Lyman α absorption.
The idea behind Eq. (17) is that only a fraction pd of the photons
interacting with the Lyman α line really undergo transitions to
higher levels or the continuum, while most of the interactions
(psc ≡ pem = 1− pd) actually should be considered as resonance
scattering events.

More rigorously, using the principle of detailed bal-
ance, instead of the standard absorption coefficient αst

ν =

hν21 B12 N1s
φ(ν)

4πΔνD
(e.g. see Mihalas 1978, p. 78), from Eq. (16),

also including the effect of stimulated emission, one would de-

duce αν =
ν221

ν2
eh[ν−ν21]/kTγ × αst

ν . Although especially the expo-
nential term should lead to significant differences in the distant
wings of the Lyman α line, we follow the standard approxima-

tion and set
ν221

ν2
eh[ν−ν21]/kTγ ∼ 1 in this expression.

It is clear that in the distant wings other corrections also will
become very important (e.g. due to two-photon emission Chluba
& Sunyaev 2008), but a full consideration of these aspects is be-
yond the scope of this paper. However, in the standard formula-

tion, i.e. setting
ν221

ν2
eh[ν−ν21]/kTγ ∼ 1, already at |xD| � 100–1000

a blackbody distribution is not exactly conserved in full equi-
librium. At the level of accuracy required in the cosmological
recombination problem this aspect will have to be resolved.

2.2.5. Final line emission and absorption term

With Eqs. (16) and (17) one can now write down the collision
term for real line emission and absorption as

C[Nν]|e/a = pem
φ(ν)

4πΔνD
R+2p − pd σr N1s φNν

= pd σr N1s φ(ν) {Nem − Nν} (18a)

Nem =
pem

pd

R+2p

hν21 B12 N1s
=

2ν221

c2

g1s

g2p

R+2p

R−2pN1s
· (18b)

Here we used the resonant scattering cross section

σr =
hν21

4π
B12

ΔνD
≡ πe

2

mec
f12

ΔνD
≡ 3λ2

21a

2

≈ 1.91 × 10−13cm2

[
(1 + z)
1100 χ

]−1/2

, (19)

and the Einstein relations A21 =
2hν321

c2 B21 and B21 =
g1s

g2p
B12,

where λ21 = c/ν21 is the Lyman α wavelength, and f12 is
the absorption oscillator strength of the Lyman α transition.
Note that Nem is only a function of redshift, but not frequency.
Furthermore, due to the factor R+2p it depends on the solution for
the population of the higher levels.

2.3. Transfer equation including line emission, line
absorption and coherent scattering in the lab frame

For coherent scattering in the lab frame no redistribution of pho-
tons over frequency occurs. Using Eqs. (7) and (18), the time-
dependent transfer equation therefore reads

1
c
∂Ñx

∂t

∣∣∣∣∣∣
x

= pd σr N1s φ(ν)
{
Ñem − Ñx

}
, (20)

with ν = x (1+ z), and Ñem = Nem/(1+ z)2, where Nem is defined
by Eq. (18b). For the initial condition Ñx(zs) = Ñpl

x , where zs
is a redshift well before the epoch of hydrogen cosmological
recombination, this equation formally has the simple solution

Ñx(z) = Ñpl
x −

∫ zs

z
[Ñem(z′) − Ñpl

x ] ∂z′e−τabs(x,z′,z) dz′. (21)

Here τabs(x, z′, z) is defined by

τabs(x, z′, z) =
∫ z′

z
pd

cσr N1s

H(1 + z̃)
φ(x[1 + z̃]) dz̃ (22a)

=

∫ ν′

ν

pd
cσr N1s

H
φ(ν̃)

dν̃
ν̃
· (22b)

In Eq. (22b) we have used the substitution ν̃ = x(1 + z̃), so that
the current redshift can be found from 1 + z̃ = ν̃(1 + z)/ν. Note
that in the given set of variables Ñpl

x does not explicitly depend
on redshift, so we omitted it in the notation.

Returning to physical coordinates one can finally write

ΔNcoh
ν (z) = [Nem(z) − Npl

ν21
(z)]

∫ z

zs

Θcoh(z′) ∂z′e−τabs(ν,z′,z) dz′, (23a)

Θcoh(z′) =
Ñem(z′) − Ñpl

x

Ñem(z) − Ñpl
x21

(23b)

where x21 = ν21/(1+z) and in expression (22) for τabs one should
use x = ν/(1 + z).
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2.4. Transfer equation including line emission, line
absorption and complete redistribution

In the case of complete redistribution one has to add the term
(see e.g. Mihalas 1978)

C[Nν]|r ≈ psc σrN1sφ(ν)
[
N̄ − Nν

]
(24)

to Eq. (20). Here N̄ =
∫
ϕ(ν)
4π Nν dν dΩ. This then yields

1
c
∂Ñx

∂t

∣∣∣∣∣∣
x

= σr N1s φ(ν)
{
Ñcr

em − Ñx

}
, (25)

with Ñcr
em = pdÑem + psc

˜̄N, and ˜̄N = N̄/(1 + z)2. Although
complete redistribution is not appropriate for conditions valid
in the expanding Universe (practically no collisions), it is used
many times in the literature, in particular for the derivation of
the Sobolev escape probability. One should mention that in this
approach it is assumed that even those photons scattering in the
very distant red wing of the Lyman α resonance can directly re-
turn to the line center in one scattering event. With Doppler re-
distribution, which is described by so-call type-II redistribution
(Hummer 1962), this is only possible after many scatterings (if
at all), or by a real line absorption event.

Comparing Eq. (25) with Eq. (20), in physical coordinates
one can directly write down the solution as

ΔNcr
ν (z) = [Ncr

em(z) − Npl
ν21

(z)]
∫ z

zs

Θcr(z′) ∂z′e−τcr(ν,z′,z) dz′, (26a)

Θcr(z′) =
Ñcr

em(z′) − Ñpl
x

Ñcr
em(z) − Ñpl

x21

(26b)

where τcr ≡ τabs|pd=1. It is clear that τcr � τabs since pd � 1
during cosmological recombination (see Fig. 1).

3. The Lyman α escape problem and results
for the escape probabilities

In order to solve the cosmological recombination problem, the
usual way is to separate the evolution of the photon field from
the evolution of the matter, in particular the populations of the
different energy states inside the hydrogen atom. This is nor-
mally achieved using the Sobolev approximation for the opti-
cally thick Lyman series in order to define the mean intensity
of photons supporting the np-state at a given time, and leads to
the definition of the Sobolev escape probability. In this section
we explain the details of this approximation and compare it with
other cases that can be solved analytically.

3.1. The Lyman α net rate

The net change of the number density of electrons in the 2p level
via the Lyman α channel is given by

dN2p

dt

∣∣∣∣∣∣
Ly−α

= A21
g2p

g1s
N1s n̄ − A21(1 + n̄) N2p

= A21(1 + n̄) N2p

[
g2p

g1s

N1s

N2p

n̄
1 + n̄

− 1

]
(27)

where A21 = 6.27 × 108 s−1 is the spontaneous 2p-1s transi-
tion rate, Ni denotes the number density of electrons in level i.

Furthermore we made use of the Einstein relations, and defined
n̄ = c2 J̄

2hν321
with

J̄ =
∫ ∞

0

ϕ(ν)
4π

Iν dν dΩ. (28)

According to the textbook derivations6 J̄ ≈ J(ν21) ≈ hν21N̄ ≈
hν21

∫
ϕ(ν)
4π Nν dν dΩ ≈ 2hν321

c2 n̄ with very high accuracy, since ϕ(ν)
is so sharply peaked at ν ∼ ν21.

Defining the line occupation number

nL =
1

g2p
g1s

N1s
N2p
−1
≈ g1s

g2p

N2p

N1s
(29)

Eq. (27) can be cast into the form

dN2p

dt

∣∣∣∣∣∣
Ly−α

≈ A21
g2p

g1s
N1s Δn̄L, (30)

where we have introduced Δn̄L = n̄ − nL, for which we will now
discuss different approximations below.

3.2. Escape probability within the Sobolev approximation

The aim is now to determine the solution for the mean occu-
pation number in the Lyman α resonance using the Sobolev
approximation. The two key assumptions for its derivation are
(i) quasi-stationary evolution of the photon field and (ii) that
every resonance scattering leads to a complete redistribution of
photons over the whole Lyman α line profile. With these assump-
tions we can obtain the solution for the spectral distortion at red-
shift z using the results of Sect. 2.4. Under quasi-stationary con-
ditions one can simply set7 Θcr(z′) = 1 in Eq. (26), and for the
absorption optical depth, τcr, one has

τ
qs
cr (ν, z′, z) ≈ τS(z)

∫ ν′
ν
ϕ(ν̃) dν̃, (31)

where ϕ(ν) = ϕ(ν, z) is given by Eq. (13), and ν′ = ν 1+z′
1+z .

Furthermore we introduced the Sobolev optical depth of the
Lyman α line

τS =
cσr N1s

H
ΔνD
ν21
=
g2p

g1s

A21λ
3
21

8πH
N1s (32)

with wavelength λ21 = c/ν21. For Eq. (31) we have assumed
that τS does not change significantly between z′ and z. Also we
have neglected the variation of 1/ν̃ in comparison with ϕ(ν), and
set 1/ν̃ ≈ 1/ν21. This approximation is normally applied in the
literature and computation of the recombination history.

From Eq. (26) with Θcr = 1 one then obtains

ΔNcr,qs
ν (z) = [Ncr

em − Npl
ν21

]
[
1 − e−τS eτSχ

]
, (33)

with χ(ν) =
∫ ν

0
ϕ(ν′) dν′.

3.2.1. Spectral characteristics of the solution

As can be seen in Fig. 2, during hydrogen recombination τS � 1.
According to Eq. (33) the photon distribution therefore varies
strongly close to8 τS[1 − χ] ∼ ln 2, while it is basically identical

6 Also in the derivation of the Einstein relations this approximation is
normally applied.
7 In fact this approximation not only implies quasi-stationarity, i.e.
Ñcr

em(z′) = Ñcr
em(z), but also that one can use Ñpl

x ≈ Ñpl
x21 .

8 There the value of ΔNcr,qs
ν (z) has decreased by a factor of 2 compared

to the line center.
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Fig. 2. Comparison of the Sobolev optical depth, τS, as defined by
Eq. (32), and the total absorption optical depth, τd = pdτS, for the 2-
and 3 shell case. To compute τS we used the recfast solution for N1s.
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the result obtained in the no line scattering approximation, while the
dashed line represents the solution for the complete redistribution case.
We also indicated the position of the Lyman β resonance at that time.

to unity9 at xD ≤ 0. Using the wing-expansion (A.2) of the Voigt
profile one therefore finds that this happens at a distance of about

xD ≈ a
π

τS

ln 2
· (34)

At z ∼ 1100 one has a ∼ 8.6×10−4 and τS ∼ 5.8×108, such that
xD ∼ 2.3 × 105. This shows that in the complete redistribution
approximation the photon distribution is in full equilibrium with
the value at the line center up to extremely large distances on the
blue side of the line center (see Fig. 3).

Physically this type of redistribution does not describe the
problem very accurately, and a much more realistic solution is

9 With relative accuracy better than ∼e−τS/2.

obtained using the case of coherent scattering in the lab frame
(see Sect. 3.3). For example, if we consider the position of the
Lyman β line at redshift z = 1100, then in Doppler units of the
Lyman α line one finds x

Lyβ
D ∼ 8000. The variation of the pho-

ton distribution, which is important for the value of the escape
probability (see below), occurs far beyond this value. In fact,
xD ∼ 2.3 × 105 corresponds to about 2 times the Lyman α fre-
quency, or 1.5 times the ionization energy of the hydrogen atom.
The Sobolev optical depth, τS, for conditions during recombina-
tion is simply so large that the approximation of complete redis-
tribution becomes unphysical.

Furthermore, at such large distances it is even questionable
as to why one should be able to neglect variations of the black-
body distribution, or the factor of 1/ν̃ in the definition of τabs.
However, such an approximation is necessary to obtain the ex-
pression for the Sobolev escape probability. Obviously other
corrections (e.g. related to two-photon processes, or the imbal-
ance in the emission and absorption coefficient as mentioned in
Sect. 2.2.4) will become important and even necessary to cor-
rect for these physical discrepancies. However, as we will see
below, in spite of all these problems the Sobolev approximation
at the level of ∼10% provides the correct answer for the escape
probability, a fact that is very surprising.

3.2.2. Mean occupation number in the Lyman α
and the Sobolev escape probability

To obtain the mean photon occupation number in the Lyman α
line we multiply (33) by ϕ and integrate over ν. This then yields

Δn̄ = n̄ − n̄pl ≈
{
pem n̄ + pd nem − npl

ν21

}
[1 − PS] (35a)

PS = 1 −
∫ 1

0
dχ e−τS [1−χ] =

1 − e−τS

τS

τS�1

↓≈ 1
τS
, (35b)

where we again have neglected the variation of npl over the line
profile. Here PS denotes the standard Sobolev escape probability
(see Fig. 1 for its redshift dependence). After some rearrange-
ment and with npl

ν21
≈ n̄pl, Eq. (35a) can be cast into the final

form

n̄cr = n̄pl +
pd(1 − PS)
pd + pscPS

[nem − n̄pl] (36a)

≡ nem − PS

pd + pscPS
[nem − n̄pl] (36b)

pd�psc PS↓≈ nem − PS

pd
[nem − n̄pl]. (36c)

A solution similar to Eq. (36) was also given and discussed in
Hummer & Rybicki (1992).

3.2.3. Relation to the expression which is normally used
in multi-level recombination codes

But how does Eq. (36) actually relate to the expression

n̄st ≈ nL − PS

[
nL − n̄pl

]
≡ n̄pl + [nL − n̄pl](1 − PS) (37)

that is normally used (cf. Seager et al. 2000) in computations of
the hydrogen recombination problem? To understand this con-
nection the key ingredient is the quasi-stationary solution for the
2p population. In fact this approximation should always be pos-
sible, even if the spectral evolution is non-stationary, simply be-
cause the re-adjustment of the 2p population after some changes
in the spectrum is so fast.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811100&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811100&pdf_id=3


626 J. Chluba and R. A. Sunyaev: Time-dependent corrections to the Ly α escape probability during cosmological recombination

With Eqs. (10) and (30), the rate equation governing the time
evolution of the 2p state can be cast in the form

NH
dX2p

dt
= R+2p − N2p R−2p + A21 N2p

[
n̄
nL
− 1

]
, (38)

where we directly neglected induced terms, and introduced
X2p = N2p/NH, where NH denotes the total number density of

hydrogen nuclei. With dX2p

dt ≈ 0 one readily finds

Nqs
2p ≈

R+2p

A21 + R−2p − A21
n̄
nL

=
pd nL

nL − pemn̄

R+2p

R−2p

· (39)

Inserting this into Eq. (18b) therefore yields

nL ≈ pem n̄ + pd nem. (40)

If we now use this in Eq. (35) one immediately finds n̄cr ≡ n̄st.
Therefore the result (36) is completely equivalent to Eq. (37).

However, in one case factors are expressed in terms of nem,
while in the other case nL is used. From Eqs. (36b) and (37) with
n̄cr ≡ n̄st one can easily show

nem − n̄pl =

(
1 +

pscPS

pd

) [
nL − n̄pl

]
. (41)

This implies that nem ≈ nL. However, since in the Lyman α rate,
Eq. (30), the main term (∼nL) cancels, the small difference nem−
nL =

pscPS

pd
[nL − n̄pl] cannot be neglected. Replacing the first nem

in Eq. (36c) with this expression and neglecting termsO(PS/pd)2

one can directly recover Eq. (37). However, here it is important
that in Eq. (36c) there is partial cancellation of terms O(PS/pd)
from the first and second nem, leaving a much smaller residual
∼ PS[nL − n̄pl].

3.3. Escape probability for the case of coherent scattering

In the absence of line scattering, or equivalently for coherent
scattering in the lab frame, the solution of the transfer equation
is given by Eq. (23). Under quasi-stationary conditions (and with
Ñpl

x ≈ Ñpl
x21

) one again has Θcoh(z′) = 1, and also it is possible to
use τqs

abs ≈ pd τ
qs
cr , where τqs

cr is defined by Eq. (31). Then one can
write

ΔNcoh,qs
ν (z) = [Nem − Npl

ν21
]
[
1 − e−τdeτdχ

]
, (42)

with τd = pdτS.

3.3.1. Spectral characteristics of the solution

Looking at Fig. 2 it is clear that τd � τS at all relevant redshifts,
so thatΔNcoh,qs

ν (z) should change strongly much closer to the line
center than in the complete redistribution case, Eq. (33). If we
again want to estimate where the photon distribution (42) varies
most rapidly, assuming that this happens in the blue wing of the
Lyman α line, we can find

xD ≈ a
π

pdτS

ln 2
· (43)

At z ∼ 1100 one has pd ∼ 10−4, such that with Eq. (34) one has
xD ∼ 30 (see Fig. 3). This result is much closer to the solution
that would be obtained when using the more realistic type-II re-
distribution for the Lyman α resonance scattering process, where
in the quasi-stationary approximation the photon distribution for
typical conditions in our Universe strongly varies at distances of
a few hundred Doppler width (e.g. see Rybicki & dell’Antonio
1994). We already checked this point and found very similar re-
sults (Chluba & Sunyaev 2009b).
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Fig. 4. Relative difference between the escape probability PL
d =

pd Pd
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and the standard Sobolev escape probability, PS. The death probability
for a 3 shell hydrogen atom was used.

3.3.2. Mean occupation number in the Lyman α
and the escape probability

With (42) and the same simplifications that were mentioned
above in connection with Eq. (36) one then obtains

n̄coh = nem − Pd[nem − n̄pl] (44a)

Pd =
1 − e−τd

τd

τd�1

↓≈ 1
pdτS

≈ PS

pd
· (44b)

Note that Pd is very similar to the standard Sobolev escape prob-
ability, PS = [1 − e−τS ]/τS, with the only difference that in
general τd ≤ τS and hence Pd ≥ PS (cf. Figs. 1 and 2). Also
one can directly see that in lowest order Eq. (44) is identical to
Eq. (36c). This already suggests that in both the complete redis-
tribution and the no line scattering approximation the answer for
n̄ is nearly the same, with differences of the order O(PS/pd)2.

Again using the quasi-stationary solution for the 2p popula-
tion, we can replace nem applying the expression Eq. (40). Then
solving for n̄ one finds

n̄coh ≈ nL − pd Pd

1 − pem Pd
[nL − n̄Pl]. (45)

Comparing this with the standard form Eq. (37), it is again clear
that for pem Pd � 1 and τS � τd � 1 one has n̄coh ≈ n̄st.
Looking at Fig. 1 shows that this should be the case at most of
the redshifts relevant for the recombination of hydrogen, and that
the differences between the complete redistribution and no scat-
tering case should not exceed the level of ∼10−3 in the redshift
range 800 � z � 1600.

In Fig. 4 we present a more detailed comparison and in-
deed find practically no important difference to the standard
Sobolev case. This result is somehow surprising, since the as-
sumption of complete redistribution leads to a totally different
(and physically unrealistic) solution for the photon distribution.
Still, the final result is comparable. This is due to the fact that
the changes in the shape of the photon distribution are compen-
sated by changes in the amplitude of the spectrum close to the
line center, as already explained in connection with Eq. (41).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811100&pdf_id=4
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Note that in the case of 2 shells the differences would be
much greater, since one can find Pd ∼ 1 at redshifts relevant
for recombination (see Fig. 1). This again shows that one has to
include at least 3 shells in the computation, in order to obtain
meaningful results.

3.3.3. Escape probability in the limit pd → 1

It is also illustrative to look at the solution in the limit pd → 1.
Physically, in the current formulation of the problem this should
give the same answer as in the approximation of complete redis-
tribution. This is because for pd = 1 every electron entering the
2p level via the Lyman α channel will pass through the contin-
uum or some higher shell, where it will forget its history. It will
be replaced by another fresh electron, with a natural line pro-
file, as in the complete redistribution approximation for a line
scattering event.

From Eq. (45), with pd = 1, psc = 0 and Pd ≡ PS, it is quite
obvious that n̄coh ≡ n̄cr, but can one also see this directly from
Eq. (44a), which in the first place only leads to n̄coh = nem −
PS[nem − n̄pl]. Here apparently nem ≡ nL, a result that indeed can
be confirmed with Eq. (40), so that also n̄coh ≡ n̄cr follows.

3.3.4. Until what distance from the line center is the shape
of the photon distribution important?

The escape probability, Pd, was obtained from the integral over
the Lyman α line profile. If we only integrate up to some fre-
quency νm, then one has

Pd(νm) =
∫ νm

0
ϕ(ν) e−τdeτdχ(ν) dν =

e−τd[1−χm] − e−τd

τd

≈ e−τd[1−χm]

τd
, (46)

with χm = χ(νm). Therefore the relative difference in the value
of Pd is given by

ΔPd(νm)
Pd

=
Pd(νm) − Pd

Pd

≈ e−τd[1−χm] − 1

τd[1−χm]�1

↓≈ −τd[1 − χm]. (47)

If we assume that νm > ν21 is already in the damping wing then
with the approximation Eq. (A.2) of the Voigt profile one obtains

ΔPd(νm)
Pd

≈ −a
π

τd

xD
· (48)

At z = 1100 this yields ΔPd(νm)
Pd

= −16%
[

xD
100

]−1
, so that in the

no-scattering approximation for ∼10%, ∼1%, and ∼0.1% accu-
racy one has to know the spectrum up to xD ∼ 102, xD ∼ 103,
and xD ∼ 104. This shows how important the knowledge of the
solution for the photon distribution in the distant wings is.

In the case of complete redistribution one can easily show

that ΔPS(νm)
PS

= −16%
[

xD

106

]−1
at z = 1100. This implies that for

∼10%, ∼1%, and ∼0.1% accuracy one has to know the spectrum
up to xD ∼ 106, xD ∼ 107, and xD ∼ 108. Let us emphasize again
that these are extremely large (even unphysical) distances from
the Lyman α resonance. However, it is in these regions where
the value of the Sobolev escape probability is formed.

3.4. Effective escape probability using the time-dependent
solution

With the solution (23) we can also describe the time-dependence
of n̄ within the approximation of coherent scattering in the lab

frame. Although one does expect some modifications when ac-
counting for partial frequency redistribution, our computations
(Chluba & Sunyaev 2009b) show that the additional correction
will be dominated by the influence of line recoil10, which has
been addressed in Grachev & Dubrovich (2008). However, the
time-dependent correction that is considered here turns out to be
much larger, so that we shall focus on this only. Below we now
provide a detailed discussion of the time-dependent correction
in the case of coherent scattering in the lab frame, introducing
an effective escape probability, which then can be used in com-
putations of the cosmological recombination history.

3.4.1. Escape probability during recombination
without redistribution but with full time-dependence

Using the time-dependent solution for the case of no redistribu-
tion, Eq. (23), it is possible to write

n̄coh(z) = n̄pl +
c2

2ν221

∫ ∞

0
ϕ(ν)ΔNcoh

ν (z) dν

= n̄pl + Δn̄em(z)
∫ ∞

0
ϕ(ν) dν

∫ z

zs

Θcoh(z′) ∂z′e
−τabs(ν,z′,z) dz′

= n̄pl + Δn̄em(z) (1 − Pt
em) (49a)

Pt
em = 1 +

∫ ∞

0
ϕ(ν) dν

∫ zs

z
Θcoh(z′) ∂z′e−τabs(ν,z′,z) dz′, (49b)

where we have Δn̄em(z) = nem − n̄pl.
Here it is very important to mention that one has to use

Θcoh(z) as defined by Eq. (23b) but evaluate the blackbody dis-
tribution at the line center only, i.e. use Θcoh(z′) ≈ [Ñem(z′) −
Ñpl

x′21
]/[Ñem(z)− Ñpl

x21
] with x′21 = ν21/[1+ z′]. This is necessary in

order to be consistent with the formulation of line emission and
absorption processes, which, as mentioned in Sect. 2.2.4, in full
equilibrium does not exactly conserve a blackbody distribution.
A more consistent formulation will be given in a future paper,
but the result for the pure time-dependent correction should be
very similar.

Equation (49a) provides the time-dependent solution for
n̄(z), when the ionization history is known until z. However, in
real calculations Eq. (49a) is not very useful, since the evalua-
tion of the integral is rather time-consuming. With Eq. (49b) we
defined an effective escape probability, which can be compared
with the result in the full quasi-stationary case. The differences
will be due to non-stationary contributions in the evolution of the
photon distribution, and can be iteratively used in computations
of the recombination history. Since the correction is expected to
be small, even the first iteration should give a rather good an-
swer.

To obtain the difference from the Sobolev escape probability,
one again has to use the quasi-stationary solution for the 2p state,
leading to relation (40). With this one can eliminate nem from 49,
and bring the expression for n̄ in the standard form (37). This
yields

n̄coh(z) = nL − PL
esc

[
nL − n̄pl

]
(50a)

PL
esc =

pdPt
em

1 − pscPt
em
· (50b)

10 Including atomic recoil we find a correction of ΔP/P ∼ 4% at
z ∼ 1100 and ΔP/P ∼ 6% at z ∼ 800 to the Sobolev escape probabil-
ity, which, in reasonable agreement with Grachev & Dubrovich (2008),
leads to ΔNe/Ne ∼ −1.2% at z ∼ 950.
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Now PL
esc can be directly compared with the Sobolev escape

probability.
Looking at (49b) it is clear that there are two sources for

the time-dependent correction. The first comes from the time-
dependence of Θcoh, while the second is due to modifications in
the absorption optical depth, τabs. Below we now discuss each
correction separately.

3.4.2. Neglecting the time-dependence of Θcoh

If we set Θcoh = 1 in Eq. (49b) one obtains

Pt,0
em(z) =

∫ ∞
0
ϕ(ν) e−τabs(ν,zs,z) dν. (51)

With this expression it is possible to take into account the time-
dependent corrections that are only due to the modifications of
τabs in comparison to the quasi-stationary case (see Sect. 3.3).

First, it is clear that due to the ν-dependence of the absorption
cross section the total absorption optical depth depends strongly
on the initial frequency of the emitted photon. For example, if
a photon is emitted on the blue side of the Lyman α resonance,
then after some redshifting it will come close to the Doppler core
of the Lyman α line, where it will be absorbed with extremely
high probability. Depending on the initial distance to the Doppler
core, this will take some time, during which the properties of the
medium (e.g. the ionization degree) may have changed signifi-
cantly. Similarly, photons emitted in the very distant red wing of
the Lyman α line may redshift for a very long time, before they
will be reabsorbed, if at all.

At high z the total absorption optical depth is expected to
mainly vary due to the changes in the number density of ionized
hydrogen atoms, and at low redshifts because of the steep drop
in pd. If for given initial frequency ν′ of an emitted photon the
time it takes until this photon is reabsorbed (τabs ∼ 1) is similar
to the Hubble time, then these changes may be important.

If the considered photon was emitted close to the Lyman α
line center, the absorption optical depth is dominated by its value
inside the Doppler core, where photons only travel a very short
distance (a small fraction of the Doppler width), before being
reabsorbed. In this case, the quasi-stationary approximation cer-
tainly is valid with very high accuracy, since Δν/ν � 1 between
emission and absorption implies Δz/z � 1, so that the medium
has not changed very much. However, when the photon is ini-
tially released in the distant red or blue wing of the Lyman α
resonance, it can redshift for a much longer time before being
reabsorbed, so that changes in the medium, in particular the ion-
ization degree and death probability, may play an important role.

In Fig. 5 we show the direct comparison of the escape prob-
ability that follows from Eq. (51) with the Sobolev escape prob-
ability. At very low and very high redshifts the correction due to
the pure time-dependence of τabs becomes very small. The dif-
ference that is seen close to z ∼ 600 and z ∼ 1800 is only related
to the correction coming from the coherent scattering approxi-
mation (see Fig. 4). In both cases this behavior can be explained
by the fact that the importance of the wings for the total value of
the escape probability decreases. Photons escape directly from
the Doppler core, so that the contributions to the value of Pt,0

em(z)
can be considered quasi-stationary.

To understand the behavior at intermediate redshift, it is im-
portant that before the maximum of τd around zmax ∼ 1300
(cf. Fig. 2), one expects that independent11 of the considered

11 This statement is not completely correct, since in Eq. (22b) we do
take into account the factor 1/ν. However, this only affects the very
distant blue wing.
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Fig. 5. Differences between the escape probability P = pdPt,0
em

1−psc Pt,0
em

, where

Pt,0
em(z) is given by Eq. (51), and the standard Sobolev escape probability,

PS. We used the death probability for the 3 shell hydrogen atom.

frequency, τabs(ν, z′, z) is smaller than in the quasi-stationary ap-

proximation τqs
abs(ν, z

′, z) = τd(z)
∫ ν′
ν
ϕ(ν′′) dν′′. This is simply

because at z′ > z � zmax the value of τd(z′) � τd(z). At those
times the time-dependent modifications of τabs should therefore
result in a positive correction to the effective escape probabil-
ity (cf. Fig. 5). With a similar argument, at redshift z � 1300
the correction in the escape probability should be negative, as is
seen in Fig. 5.

3.4.3. Correction due to the time-dependence of Θcoh

In Sect. 3.4.2 we have neglected the time-dependence of Θcoh.
This factor describes how much the photon emission process
varies as a function of time, which in the present approximation
is independent of frequency (see comment in Sect. 3.4.1).

With Eqs. (51) and (49b) one can define

ΔPt
em =

∫ ∞

0
ϕ(ν) dν

∫ zs

z

[
Θcoh(z′) − 1

]
∂z′e

−τabs(ν,z′,z) dz′

= −
∫ ∞

0
ϕ(ν)ΔF(ν) dν (52a)

ΔF(ν) =
∫ z

zs

[
Θcoh(z′) − 1

]
∂z′e−τabs(ν,z′,z) dz′. (52b)

With this expression it is now possible to calculate12 the addi-
tional correction to the escape probability coming from the vari-
ation of Θcoh over time.

In order to understand the final result we first con-
sider the behavior of the inner integrand (52a) at different
stages of hydrogen recombination. Since the function F(ν) =∫ z

zs
Θcoh(z′) ∂z′e−τabs(ν,z′,z) dz′ is identical to the Lyman α spectral

distortion in the no redistribution approximation, but normalized

12 The evaluation of the integral (52a) is rather cumbersome. It is most
important that for a fixed frequency ν at redshift z the inner integral
varies most strongly at z′ ∼ max(z, ν21(1 + z)/ν).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811100&pdf_id=5
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Fig. 6. The spectral distortion ΔNν far away from the Lyman α line center at different stages of hydrogen recombination. In all cases redistribution
of photons over frequency was neglected. We normalized the distortion to unity at the Lyman α frequency, i.e. F ≡ ΔNν(z)/ΔNν21 (z). The dotted
curves give the spectral distortion in the quasi-stationary approximation, Fqs(ν) = 1 − e−τdeτdχ(ν). For the dashed curves we neglected the variation
of Θcoh in the solution (23), leading to F0(ν) = 1− e−τabs(ν,zs ,z) , with zs → ∞. The solid lines show the spectral distortion in the time-dependent case,
i.e. F(ν) = F0(ν)+ ΔF(ν), where ΔF(ν) is defined by Eq. (52b). For comparison, the dash-dotted curves give the spectral distortion in the Sobolev
approximation, FS(ν) = 1 − e−τS eτSχ(ν). We also indicated the position of the maximum of the redshifted Lyman α distortion, which appeared at
redshift z ∼ 1400.

to its value at the line center, i.e. F(ν) ≡ ΔNν(z)/ΔNν21 (z), it is
illustrative to define

Fqs(ν) = 1 − e−τdeτdχ(ν) (53a)

F0(ν) = 1 − e−τabs(ν,zs,z) (53b)

F(ν) = F0(ν) + ΔF(ν), (53c)

in addition to Eq. (52b). Here Fqs(ν) represents the Lyman α
spectral distortion in the full quasi-stationary approximation, for
F0(ν) only the variation of Θcoh is neglected, and F(ν) is the
time-dependent distortion in the no redistribution approxima-
tion. From these functions the corresponding escape probabil-
ities can be obtained by Pesc = 1 − ∫

ϕ(ν)F(ν) dν, which then
can be inserted in Eq. (50b) when comparing with PS. Therefore
it is clear that if F(ν) < Fqs(ν) at all frequencies, the resulting
effective escape probability should be slightly larger than Pd.

In Figs. 6 and 7 we illustrate the behavior of the func-
tions (53) at different stages of hydrogen recombination. We

used the solution for the populations in the 3 shell case as given
by our multi-level code (Rubiño-Martín et al. 2006; Chluba et al.
2007). As expected, in all cases Fqs(ν) and F0(ν) are very close
to unity at xD � 0 and then drops very fast toward zero at xD � 0.
Also Fig. 7 clearly shows that Fqs(ν) ≈ F0(ν) in the red wing and
the Doppler core of the Lyman α resonance. This is expected,
since at ν � ν21 always τabs � 1, so that its exact value does
not matter. Furthermore we can observe a change in the sign of
the difference F0(ν)–Fqs(ν) in the blue wing when going from
high to lower redshift. At z = 1400 one can clearly see that
F0(ν) < Fqs(ν) in the range 0 � xD � 100, so that Pt,0

em(z) > Pd
is expected, in agreement with the results presented in Fig. 5.
On the other hand, in all the other cases shown F0(ν) > Fqs(ν)
at 0 � xD � 100 so that one should find Pt,0

em(z) < Pd, again
confirming the results given in Fig. 5.

Because of the steep drop of Fqs(ν) and F0(ν) at a few
Doppler width above the line center, the main contribution to

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811100&pdf_id=6
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Fig. 7. The spectral distortion ΔNν close to the Lyman α line center at different stages of hydrogen recombination. In all cases redistribution of
photons over frequency was neglected. We normalized the distortion to unity at the Lyman α frequency, i.e. F ≡ ΔNν(z)/ΔNν21 (z) and show the
difference to the quasi-stationary solution, Fqs(ν) = 1 − e−τdeτdχ(ν). For the dashed curves we neglected the variation of Θcoh in the computation of
the escape probability, while for the solid lines the spectral distortion in the time-dependent case was taken into account.

the escape probability clearly comes from rather close to the line
center. However, at the level of percent the shape of the distortion
up to a few hundred or thousand Doppler widths is important.

If we now look at the spectral distortion in the time-
dependent approximation, F(ν) = F0(ν) + ΔF(ν), we can see
that at all stages the variations of Θcoh with redshift become im-
portant outside the Doppler core. From Fig. 6 we can distinguish
in more detail the following regimes: (i) at redshifts z � 1400 the
distant wing distortion is smaller than in the quasi-stationary ap-
proximation. This is because at redshifts much before the time
under consideration the emission in the Lyman α transition was
very inefficient, so that until then not many photons can have ap-
peared or reached large distances from the Lyman α line. The
slope of the red wing distortion is positive close to the line cen-
ter; (ii) at redshifts z � 1400 the distortion in the blue wing and
nearby red wing is greater than in the quasi-stationary approx-
imation. The production rate of Lyman α photons has already
passed its maximum (at z ∼ 1400), so that at the current line

center fewer photons are produced the lower the redshift be-
comes. The slope of the red wing distortion is negative close
to the line center.

It is also clear that in case (i) the value of Δn̄ is smaller than
in the quasi-stationary approximation, while it is expected to be
larger in case (ii). According to the definition 49 this implies that
in the former case the effective escape probability is higher than
in the quasi-stationary approximation, while it is lower in the
latter case. In Fig. 8 we can see that these expectations are true
(see solid line). The total correction due to excess or a deficit of
photons leads to a total decrease of the effective escape probabil-
ity at z � 1400 that reaches ΔP/P ∼ −5.8% at z ∼ 1140, while it
results in an increase of ΔP/P ∼ +3.7% at z ∼ 1510.

Although in the escape integral the distortion in the vicin-
ity of the line center mainly contributes, at the percent level the
distant wings are also important. As we have seen in Fig. 6 the
red wing distortion due to the Lyman α transition can exceed
the distortion close to the line center by a large amount. In this

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811100&pdf_id=7
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Fig. 8. Correction to the Sobolev escape probability due to variations of
Θcoh. For the solid curve we used ΔPt

em(z) according to Eq. (52). The
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case the question is how much the very distant wings actually
contribute to the total correction shown in Fig. 8. For this we
computed ΔPt

em(z), but excluding the correction at xD ≤ −103.
Looking at the boxed curve in Fig. 8 shows that the very dis-
tant red wings contribute about ΔP/P ∼ 0.6% at z ∼ 1500, and
ΔP/P ∼ −1.3% at z ∼ 1100. This is an important point, since
in the very distant wings other processes related to the formu-
lation of the problem will also become important (i.e. due to
changes in the absorption profiles, when considering the prob-
lem as a two-photon process), so that one expects additional re-
visions for contributions from the very distant wings. However,
here the corrections mainly seems to come from regions in the
vicinity (|xD| � 102–103) of the Lyman α line center.

At low redshifts (z � 800–900) one can observe an addi-
tional strong decrease in the effective escape probability. This is
due to the additional re-excitation of electrons by the distortion
on the blue side of the Lyman α resonance. Most of the photons
in this part of the spectrum have been emitted much earlier, at
times around the maximum of the Lyman α emission (z ∼ 1400).
This also explains the huge difference to the quasi-stationary so-
lution: as one can see in Fig. 6, at z � 800 the amount of photons
exceeds the spectral distortion obtained in the quasi-stationary
approximation by about two orders of magnitude. The spectral
distortion is only a factor of ∼100 below the emission in the line
center. Looking at Fig. 7, very close to the Lyman α line center
some differences also are visible, which at the percent level do
matter.

To show that the distortions on the blue side of the Lyman α
are responsible for this re-excitation we also computed the cor-
rection only including the non-stationary contributions for the
red side, but setting Θcoh = 1 for evaluations on the blue side.
The result is also shown in Fig. 6 (stars). For completeness we
also gave the curve when only including the corrections on the
blue side of the line. As one can see, at z � 1100 the red and
blue wing corrections are very similar. However, at low red-
shifts the blue wing correction clearly dominates, supporting the
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Eq. (49b), but including a different number of shells.

statement made above. Again one can expect some changes in
the conclusions when treating the problem in the full two-photon
formulation, since the emission of photons at high frequencies
will be significantly less in the two-photon treatment, simply due
to the fact that due to energy conservation the emission profiles
do not extend to arbitrarily high frequencies (e.g. see Chluba &
Sunyaev 2008). However, the corrections to the escape probabil-
ity at z � 800 do not propagate very strongly to the ionization
history, so that here we do not consider this unphysical aspect of
the solution any further.

3.4.4. Dependence of the effective escape probability
on the included number of hydrogen shells

Although the death probability pd does not dependent on the so-
lution of the recombination problem, the amount of fresh elec-
trons injected into the Lyman α line depends on the populations
of the excited states. Therefore the strength of the Lyman α line
strongly depends on the total number of shells that are included
(Rubiño-Martín et al. 2006). Here in particular the low-redshift
tail (z � 800) will be affected, and hence there one also expects
changes in the correction to the effective escape probability.

In Fig. 8 we show the differences in the escape probability
when including more shells. We used the numerical solution for
the excited levels as obtained with our multi-level hydrogen code
(Chluba et al. 2007). At redshifts z � 1200 the result is practi-
cally unaffected by the total number of hydrogen shells that are
included. In particular the result seems converged when includ-
ing ∼4–5 shells, leading to a total corrections of ΔP/P ∼ −7.6%
at z ∼ 1100, while it results in an increase of ΔP/P ∼ +6.4% at
z ∼ 1490. At redshifts 900 � z � 1200, some small changes
are still visible when including more than 3 shells, but again
the result seems to remain unchanged when including more than
∼4–5 shells. For the computation of the CMB power spectra the
corrections in this range are most important (see Sect. 4).

At lower redshifts, however, the result still changes notably.
At z ∼ 600 the correction increases by about 6.4% when includ-
ing 5 shells, and for 10 shells even by about 10%. This can be
explained when realizing that the total emission in the Lyman α
line at low redshifts becomes less when including more shells.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811100&pdf_id=8
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Fig. 10. Total correction to the Sobolev escape probability for the 5 shell
hydrogen atom. All curves were computed using the time-dependent so-
lution, Pt

em = Pt,0
em + ΔPt

em according to Eqs. (49b), (51) and (52). The
term Pt,0

em was fully included, but for the contribution from ΔPt
em the

time-dependent correction was only taken into account for a given cen-
tral region |xD| ≤ const around the resonance, as labeled respectively.

Therefore the wing emission from redshifts around the maxi-
mum of the Lyman α emission (z ∼ 1400), which practically
remains unchanged, becomes more important, being able to re-
excite the 2p state as explained in the previous paragraph. As we
mentioned already this aspect will probably be affected when
including corrections to the emission and absorption profiles ac-
cording to the two-photon formulation. Furthermore, as we will
see in the next Sect. this low redshift tail is not so important for
the predictions of the CMB power spectra.

3.4.5. Dependence of the effective escape probability
on the distance from the line center

As a last point, we want to answer the question of where in the
case of ΔPt

em the main correction actually comes from. We have
already seen in Sect. 3.4.3 that the very distant red wing con-
tributes at the level of percent. Also we have seen that at redshifts
z � 800–900 the blue and red sides of the Lyman α line give sim-
ilar contributions, while at low redshift due to the self-feedback
the blue wing clearly dominates.

In Fig. 10 we show the total correction to the Sobolev escape
probability when only including the time-dependent correction
for a given central region around the resonance in the compu-
tation of ΔPt

em. It is obvious that the innermost Doppler core
(±1 Doppler width) does not contribute much to the result. This
is expected, since there the photon distribution should evolve as
in the quasi-stationary approximation, with very high accuracy.
This fact can also be seen in Fig. 7, where close to the line center
the deviation of the photon distribution for the quasi-stationary
solution is very small.

At low redshifts (z � 800–900) the region up to ±4 to
±10 Doppler width seems to be quite important. As explained
in Sect. 3.4.3, there the correction is mainly because of self-
feedback, which is strongest where photons really are reab-
sorbed. However, at practically all other redshifts one can clearly
see that the distant wings contribute significantly. Even within

±103 Doppler width the deviations of the spectrum from the
quasi-stationary solution are important.

3.5. Dependence of the escape probability on the shape
of the emission and absorption profile

As mentioned in the introduction, in the Sobolev approximation
it is well known that the result for the escape probability does not
depend on the shape of the Lyman α emission profile. Looking at
the derivation of expression 35b for PS it is clear that in addition
to the condition of quasi-stationarity one needs φem ≡ φabs ≡ φsc,
i.e. the equality of the line emission, line absorption, and line
scattering profile. This conclusion is also reached in the case of
no line scattering (Sect. 3.3) leading to Pd as given by Eq. (44b).

However, if φem � φabs then the situation is more compli-
cated. Starting with Eq. (20), but allowing φem � φabs, one can
find the solution

ΔNa
ν (z) = [Nem(z) − Npl

ν21
(z)]

∫ z

zs

Θa(z′) ∂z′e
−τabs(ν,z′,z) dz′, (54a)

Θa(z′) =
Ñem(z′) × φem(z′,νz′ )

φabs(z′ ,νz′ )
− Ñpl

x

Ñem(z) − Ñpl
x21

(54b)

with νz′ = ν 1+z′
1+z , and τabs(ν, z′, z) as defined by Eq. (22) but re-

placing φ→ φabs. With this, the mean occupation number in the
Lyman α line can be directly computed leading to

n̄coh(z) = n̄pl +
c2

2ν221

∫ ∞

0
ϕabs(ν)ΔNa

ν (z) dν

= n̄pl + Δn̄em(z)
∫ ∞

0
ϕabs(ν) dν

∫ z

zs

Θa(z′) ∂z′e−τabs(ν,z′,z) dz′

= n̄pl + Δn̄em(z) (1 − Pa
em) (55a)

Pa
em = 1 +

∫ ∞

0
ϕabs(ν) dν

∫ zs

z
Θa(z′) ∂z′e−τabs(ν,z′,z) dz′, (55b)

with the same definitions as in Eq. (49). Note that here one has to
compute n̄ using the absorption profile function. Now it is easy
to show that for Θa = 1, τabs = pdτS χ, and φem ≡ φabs = φ, one
directly obtains the solution Eq. (44). Here the crucial point is
that it is possible to introduce the variable χ(ν) =

∫ ν
0
φ(ν′) dν′,

so that there is no direct dependence on φ. However, it is clear
that already for φem � φabs, in general Θa � 1, implying that this
coordinate transformation can only be achieved approximately,
so that the result will depend on the shape of the Lyman α
line. Similarly, in the case φem ≡ φabs, but for Θa � 1 and
τabs � f (z) χ, where f (z) is a function of redshift only, the result
for the escape probability will depend on φ. In that case, it will
be important how large the deviations from quasi-stationarity
are in the range, where most of the contributions to P origi-
nate. If for example the profile is a pure Doppler core, then any
photon that is emitted will at most travel, scatter and redshift
over a characteristic length Δν/ν ∼ few × 10−5 before escaping.
This corresponds to Δz/z ∼ 10−5, so that the properties of the
medium have not changed very much, and the correction should
be ΔNe/Ne ∼ few × 10−3%. However, if, as in the real problem,
radiative transfer is occuring in the distant Lorentz wings, these
corrections will be important.

4. Corrections to the ionization history

With the results of the previous Section it is possible to esti-
mate the expected changes in the ionization history. In Fig. 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811100&pdf_id=10
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Fig. 11. Relative change in the number density of free electrons when
allowing for a constant relative change in the Sobolev escape probability
of the Lyman α transition. At maximum ΔNe/Ne ∼ − 1

4ΔP/P.

we show how a constant difference in the Sobolev escape proba-
bility affects the ionization history. We can see that the response
is roughly proportional to the given ΔP/P. Therefore we can use
the curve for ΔP/P = 1% to estimate the changes in the ioniza-
tion history for the results given above. Since all the corrections
are small, one expects a small additional correction, when com-
puting the escape probability for this modified ionization history.
For the purpose of this paper this approximation is sufficient.

Figure 11 also shows that percent level corrections to the es-
cape probability do not affect the ionization history at z � 1600,
while at z ∼ 1000 one has ΔNe/Ne ∼ − 1

4ΔP/P. Also one can see
that at low redshifts, changes of the escape probability are not
propagating very much to the ionization history, resulting only
in ΔNe/Ne ∼ −0.054ΔP/P at z ∼ 600. Note that the correction
of Ne in both cases is much smaller than the one of the escape
probability. This is because the 2s-1s two-photon decay channel
already contributes slightly more to the effective recombination
rate.

In Fig. 12 we give the correction of the number density of
free electrons as a function of redshift. The time-dependent cor-
rection of the escape probability leads to a ∼1.6–1.8% change
of ΔNe/Ne in the redshift range 800 � z � 1200. This change is
practically twice as large as the effect due to line recoil (Grachev
& Dubrovich 2008), so that the sum of the time-dependent cor-
rection and the recoil correction is still dominated by the former
contribution, leaving ΔNe/Ne ∼ 0.94% at z ∼ 1100. This will be
important for the computation of the CMB power spectra, where
at large l in the case of TT one expects a ΔCl/Cl ∼ 1%, and
about 2 times more for EE.

5. Discussion and conclusions

5.1. Main results related to the cosmological ionization
history and the CMB power spectra

In this paper we investigated the validity of the Sobolev approx-
imation for the Lyman α escape probability during hydrogen re-
combination. We separate absorption and emission of Lyman α
photons from resonant scattering events, including the fact that
processes leading to full redistribution of photons over the Voigt
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Fig. 12. Estimated relative changes in the number density of free elec-
trons when including various physical processes. The curves were ob-
tained by simply multiplying the computed change in the escape prob-
ability for the 10 shell case as given in Fig. 9 by the curve in Fig. 11 for
ΔP/P = +1% (thick solid line). We also show the result of Grachev &
Dubrovich (2008) and the resulting sum of both (dashed).

profile occur with much lower (∼10−3–10−4 times) probability
than resonant scatterings. We have shown that within the stan-
dard formulation the rapid changes in the ionization degree dur-
ing recombination lead to significant departures of the photon
distribution from the quasi-stationary solution. We took these
corrections into account analytically, assuming that the photon
redistribution process over frequency during a scattering is co-
herent in the lab frame.

Although one does expect some additional modifications
when accounting for partial frequency redistribution, our com-
putations show (Chluba & Sunyaev 2009b) that the additional
correction will be dominated by the influence of line recoil, that
has been addressed in Grachev & Dubrovich (2008). However,
the time-dependent correction that is considered here turns out
to be significantly larger, so that we focused on this only. A more
complete consideration of this problem is in preparation (Chluba
& Sunyaev 2009b).

Here we found that the time-dependent corrections to the ef-
fective Lymanα escape probability result in a ∼1.6–1.8% change
of ΔNe/Ne in the redshift range 800 � z � 1200 (see Sects. 3.4
and 4 for more detail). These corrections are important for the
Thomson visibility function and in computations of CMB power
spectra, where at large (l ∼ 1000–3000) multipoles l in the case
of TT one expects modifications of the order of ΔCl/Cl ∼ 1%,
and about 2 times more for EE. However, note that we also ex-
pect additional changes when formulating the problem more rig-
orously in the two- or multi-photon approach (see discussion in
Sect. 5.2).

The main reason for the corrections discussed here are
(i) time-dependent changes in the absorption optical depth; and
(ii) changes in the net emission rate due to the time-dependence
of cosmological recombination. The correction due to case (i) is
especially important for contributions coming from the distant
wings of the Lyman α line, where emitted photons can travel,
scatter, and redshift over a very long time before getting reab-
sorbed. For the 3 shell hydrogen atom the associated correction

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811100&pdf_id=11
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to the escape probability is ΔP/P ∼ −1.2% at z ∼ 1100, while it
results in an increase of ΔP/P ∼ +2.8% at z ∼ 1440 (for more
details see Fig. 5).

The correction related to the time dependence of the net
emission rate is slightly larger, leading to a total decrease of the
effective escape probability at z � 1400, that for the 3 shell atom
reaches ΔP/P ∼ −5.8% at z ∼ 1140, while it results in an in-
crease of ΔP/P ∼ +3.7% at z ∼ 1510 (for more details see
Fig. 8). Here a significant contribution is due to departures of
the very distant (∼103–104 Doppler widths) wing spectrum from
the quasi-stationary solution (e.g. see Sect. 3.4.5).

We also showed that in particular at low redshifts
(z � 800–900) this correction, owing to a self-feedback process,
strongly depends on the number of shells that have been taken
into account for the computation (see Fig. 9). This is because
the effective emission rate depends on the solution for the popu-
lations of the excited levels, so that it is important to include at
least 4–5 shells into the computations. However, this aspect of
the solution appears to be due to the incompleteness in the for-
mulation of the problem, so that at these redshift the conclusions
should change when using a two- or multi-photon description
(see discussion in Sect. 5.2). Also it is important to mention that
for the corrections in the CMB power spectra, this should not
affect the results very much.

5.2. Apparent problems with the standard formulation

Our analysis shows that under the extreme physical conditions
valid in the hot Universe (extremely low plasma density in the
presence of the intense CMB radiation field), the standard for-
mulation of the Lyman α transfer problem leads to several ap-
parently unphysical results. First, we would like to point out
that all our computations and estimates clearly show how im-
portant (at the percent level accuracy) the distant wings of the
lines are for the value the escape probability or mean inten-
sity supporting the 2p level (e.g. see Sects 3.3.4 and 3.4.5).
However, in the standard approach variations of the blackbody
and also any power-law variations in ν are usually neglected
in the formulation of the transfer problem and analytic com-
putation, an approximation that is certainly questionable when
going to |Δν/ν| � 1%, or ∼103 Doppler width. For example,
as we mentioned in Sect. 2.2.4, this approximation leads to a
small non-conservation of a blackbody spectrum at large dis-
tances from the line center, an aspect that simply follows from
exact application of the detailed balance principle, leading to a

thermodynamic correction factor f =
ν221

ν2
eh[ν−ν21]/kTγ . In a two-

photon formulation of the problem this factor automatically ap-
pears (Chluba & Sunyaev 2009a).

Also, the emission of photons according to the standard
Voigt profile in principle allows the production of photons un-
til arbitrarily large distances on the blue side of the Lyman α
resonance. Without introducing some high frequency cut-off,
in the cosmological recombination problem these photons will
lead to some unphysical self-feedback at low redshift (e.g. see
Sect. 3.4.1), which is also present in our current solution, but at
times that are not so important for the CMB power spectra. We
expect that both problems can be resolved when using a two- or
multi-photon formulation, in which detailed balance is applied
self-consistently, and where the line profiles are naturally bound
(e.g. see Chluba & Sunyaev 2008) due to energy conservation.

Focusing on the Sobolev approximation (quasi-stationarity
of the spectrum and complete redistribution), several unphysical
aspects also appear. These are again due to the unique properties

of our Universe, where there are hardly any collision and the
expansion rate is so low that the Sobolev optical depth τS
reached values of ∼106–108 during recombination. As explained
in Sect. 3.2 this leads to the case that the variations of the pho-
ton distribution that are important for the mean intensity sup-
porting the 2p level during cosmological recombination occur at
distances of ∼105–108 Doppler widths from the resonance. This
is far beyond the Lyman β line or even the ionization energy of
the hydrogen atom.

It is also possible to compute the present day Lyman α spec-
tral distortion in the time-dependent approach, using the solu-
tion 26, for which it was assumed that every line scattering
leads to a complete redistribution of photons over frequency. We
checked that in this case one would obtain a Lyman α line profile
that is very different from the one computed in the usual δ func-
tion approximation (e.g. see Rubiño-Martín et al. 2006). One
reason for this is that the effective frequency beyond which the
photon distribution is no longer affected by the Lyman α reso-
nance is very far on the red side of the line center (at xD ∼ −103

to −104, or |Δν/ν| ∼ 1%–10%). This aspect of our computa-
tions also suggests that in principle it should be possible to con-
strain the type of redistribution that is at work during hydrogen
recombination by looking at the exact position and shape of the
residual Lyman α distortion in the CMB. In all cases, no line
scattering, complete redistribution, and partial redistribution the
Lyman α distortion will look different.

We conclude that for the conditions during cosmological re-
combination, complete redistribution for a line scattering event
in the standard formulation is not an appropriate redistribution
process, and leads to rather unphysical results. With the ap-
proximation of coherent scattering in the rest-frame, some of
the unphysical aspects of the solution disappear. However, as
mentioned above, at low redshifts we obtain a large feedback
of Lyman α photons initially released at high redshifts (e.g. see
Sect. 3.4.1). These problems can be resolved using a two- or
multi-photon formulation.

5.3. Future prospects

In spite of all the complications we expect that to lowest order
one can take the time-dependent correction during cosmolog-
ical recombination into account using the solution (49), or in
the full two-photon description using a time-dependent solution
in the no-scattering approximation. Since all additional correc-
tions will (also) be small, one can then compute each other pro-
cess more or less separately. This should also be possible for the
case of helium recombination, but here the reabsorption of pho-
tons by the small fraction of neutral hydrogen atoms present at
that time will be much more important (Switzer & Hirata 2008a;
Kholupenko et al. 2007; Rubiño-Martín et al. 2008).

In order to include the final correction into the computations
of the CMB power spectra it will be necessary to develop a fast
scheme for the evaluation of the ionization history. For this pur-
pose Fendt et al. (2008) recently proposed a new approach called
rico13, which uses multi-dimensional polynomial regression to
accurately represent the dependence of the free electron frac-
tion on redshift and the cosmological parameters. Here one first
has to produce a grid of models using a given full recombina-
tion code, for which each run may take several hours or up to
days. However, the time-consuming part of the computation is
restricted to the training of rico, while afterwards each call
only takes a small fraction of a second. This approach should

13 http://cosmos.astro.uiuc.edu/rico/
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allow one to propagate all the corrections in the ionization his-
tory that are included in the full recombination code to the CMB
power spectra, without using any fudge-factors, like in recfast
(Seager et al. 1999; Wong et al. 2008). In the future, we plan
to provide an updated training set for rico, including the time-
dependent corrections discussed here. This should also make it
easier for other groups to cross-validate our results.
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Appendix A: Computational details

A.1. Computations of φ(ν)

The evaluation of the Voigt profile, Eq. (13), is usually rather
time-consuming. However, convenient approximations for φ(xD)
can be given in the very distant wings and also close to the center
of the line. For |xD| ≤ 30 we use the approximation based on the
Dawson integral up to sixth order as described in Mihalas (1978,
Sect. 9.2, p. 279). In the distant wings of the line (|xD| ≥ 30) we
apply the Taylor expansion

φwings≈ a

πx2
D

⎡⎢⎢⎢⎢⎣1+ 3 − 2a2

2x2
D

+
15 − 20a2

4x4
D

+
105(1 − 2a2)

8x6
D

⎤⎥⎥⎥⎥⎦ · (A.1)

We checked that the Voigt function is represented with relative
accuracy better than 10−6 in the whole range of frequencies and
redshifts. Using Eq. (A.1), on the red side of the resonance one
can approximate the integral χ =

∫ xD

−∞ φ(x′) dx′ by:

χwings = − a
πxD

⎡⎢⎢⎢⎢⎣1 + 3 − 2a2

6x2
D

+
3 − 4a2

4x4
D

+
15(1 − 2a2)

8x6
D

⎤⎥⎥⎥⎥⎦ , (A.2)

as long as x � −30. Since a ∼ 10−4–10−3, this shows that in the
distant wings only a very small fraction of photons is emitted.
Using the symmetry of the Voigt profile one finds χ(x) = 1 −
χ(−x), such that Eq. (A.2) is also applicable for x � 30.
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