Issue |
A&A
Volume 496, Number 1, March II 2009
|
|
---|---|---|
Page(s) | 57 - 75 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:200811443 | |
Published online | 14 January 2009 |
The 0.4
z
1.3 star formation history of the Universe as viewed in the far-infrared
1
Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d'Astrophysique, Bât. 709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France e-mail: Benjamin.magnelli@cea.fr
2
Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125, USA
3
National Optical Astronomy Observatory, Tucson, AZ 85719, USA
4
Institut d'Astrophysique de Paris, UMR7095 CNRS, UPMC, 98bis boulevard Arago, 75014 Paris, France
5
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
Received:
28
November
2008
Accepted:
20
December
2008
Aims. We use the deepest existing mid- and far-infrared observations (reaching ~3 mJy at 70 μm) obtained with Spitzer in the Great Observatories Origins Deep Survey (GOODS) and Far Infrared Deep Extragalactic Legacy survey (FIDEL) fields to derive the evolution of the rest-frame 15 μm, 35 μm, and total infrared luminosity functions of galaxies spanning .
We thereby quantify the fractional contribution of infrared luminous galaxies to the comoving star formation rate density over this redshift range. In comparison with previous studies, the present one takes advantage of deep 70 μm observations that provide a more robust infrared luminosity indicator than 24 μm affected by the emission of PAHs at high redshift (
), and we use several independent fields to control cosmic variance.
Methods. We used a new extraction technique based on the well-determined positions of galaxies at shorter wavelengths to extract the 24 and 70 μm flux densities of galaxies. It is found that sources separated by a minimum of 0.5 FWHM are deblended by this technique, which facilitates multi-wavelength associations of counterparts. Using a combination of photometric and spectroscopic redshifts that exist for ~80% of the sources in our sample, we are able to estimate the rest-frame luminosities of galaxies at 15 μm and 35 μm. By complementing direct detections with a careful stacking analysis, we measured the mid- and far-infrared luminosity functions of galaxies over a factor ~100 in luminosity (
) at
. A stacking analysis was performed to validate the bolometric corrections and to compute comoving star-formation rate densities in three redshift bins
,
and,
.
Results. We find that the average infrared spectral energy distribution of galaxies over the last 2/3 of the cosmic time is consistent with that of local galaxies, although individual sources do present significant scatter. We also measured both the bright and faint ends of the infrared luminosity functions and find no evidence for a change in the slope of the double power law used to characterize the luminosity function. The redshift evolution of infrared luminous galaxies is consistent with pure luminosity evolution proportional to up to
. We do not find evidence of differential evolution between LIRGs and ULIRGs up to
, in contrast with previous claims. The comoving number density of infrared luminous galaxies has increased by a factor of
100 between
. By
, LIRGs produce half of the total comoving infrared luminosity density.
Key words: galaxies: evolution / infrared: galaxies / galaxies: starburst / cosmology: observations
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.