Issue |
A&A
Volume 495, Number 2, February IV 2009
|
|
---|---|---|
Page(s) | L5 - L8 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361:200811457 | |
Published online | 20 January 2009 |
Letter to the Editor
The mixed chemistry phenomenon in Galactic Bulge PNe *,**
1
European Space Astronomy Centre, INSA SA, PO Box 78, 28080 Madrid, Spain e-mail: Jose.Perea@sciops.esa.int
2
Instituto de Astrofísica de Canarias, C/ via Láctea s/n, 38200 La Laguna, Spain
3
Herschel Science Centre. European Space Astronomy Centre, Research and Scientific Support Department of ESA, Villafranca del Castillo, PO Box 78, 28080 Madrid, Spain
4
N. Copernicus Astronomical Center, Rabiańska 8, 87-100 Toruń, Poland
5
Department of Physics. University of Maryland, College Park, MD 20742-4111, USA
Received:
2
December
2008
Accepted:
13
January
2009
Aims. We investigate the dual-dust chemistry phenomenon in planetary nebulae (PNe) and discuss reasons for its occurrence, by analyzing Spitzer/IRS spectra of a sample of 40 Galactic PNe among which 26 belong to the Galactic Bulge (GB).
Methods. The mixed chemistry is derived from the simultaneous detection of Polycyclic Aromatic Hydrocarbon (PAH) features in the 6–14 μm range and crystalline silicates beyond 20 μm in the Spitzer/IRS spectra.
Results. Out of the 26 planetary nebulae observed in the Galactic Bulge, 21 show signatures of dual-dust chemistry. Our observations reveal that the simultaneous presence of oxygen and carbon-rich dust features in the infrared spectra of [WC]-type planetary nebulae is not restricted to late/cool [WC]-type stars, as previously suggested in the literature, but is a common feature associated with all [WC]-type planetary nebulae. Surprisingly, we found that the dual-dust chemistry is seen also in all observed weak emission-line stars (wels), as well as in other planetary nebulae with central stars being neither [WC] nor wels. Most sources observed display crystalline silicate features in their spectra, with only a few PNe exhibiting, in addition, amorphous silicate bands.
Conclusions. We appear to detect a recent change of chemistry at the end of the Asymptotic Giant Branch (AGB) evolution in the low-mass, high-metallicity population of GB PNe observed. The deficit of C-rich AGB stars in this environment suggests that the process of PAH formation in PNe occurs at the very end of the AGB phase. In addition, the population of low-mass, O-rich AGB stars in the Galactic Bulge, do not exhibit crystalline silicate features in their spectra. Thus, the high detection rate of dual-dust chemistry that we find cannot be explained by long-lived O-rich (primordial or circumbinary) disks. Our most plausible scenario is a final thermal pulse on the AGB (or just after), which could produce enhanced mass loss, capable of removing/mixing (sometimes completely) the remaining H-rich envelope and exposing the internal C-rich layers, and generating shocks responsible for the silicate crystallization.
Key words: planetary nebulae: general / circumstellar matter / stars: Wolf-Rayet
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.