Issue |
A&A
Volume 493, Number 3, January III 2009
|
|
---|---|---|
Page(s) | 819 - 828 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:200810766 | |
Published online | 20 November 2008 |
Stellar dynamos with
effect
1
Institute for Solar-Terrestrial Physics, Siberian Division of the Russian Academy of Sciences, 664033 Irkutsk, Russia e-mail: pip@iszf.irk.ru
2
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany e-mail: seehafer@uni-potsdam.de
Received:
7
August
2008
Accepted:
4
November
2008
Context. The standard dynamo model for the solar and stellar magnetic fields is based on the
mechanism, namely, an interplay between differential rotation
(the Ω effect) and a mean electromotive force generated by helical turbulent
convection flows (the α effect). There are, however, a number of problems
with the α effect and
dynamo models. Two of them are that, in the case of the Sun,
the obtained cycle periods are too short and the magnetic activity is not sufficiently
concentrated at low latitudes.
Aims. We explore the role of turbulent induction effects that may appear in addition
to the α effect. The additional effects result from the combined action of rotation and an
inhomogeneity of the large-scale magnetic field. The best known of them is the effect. We also include anisotropic diffusion and a new
dynamo term that is of third order in the rotation vector
.
Methods. We studied axisymmetric mean-field dynamo models containing differential rotation,
the α effect, and the additional turbulent induction effects.
The model calculations were carried out using the rotation profile of the Sun as
obtained from helioseismic measurements and radial profiles of other quantities
according to a standard model of the solar interior. In addition, we consider a dynamo
model for a full sphere that is based solely on the joint induction effects of rotation and an inhomogeneity of the large-scale magnetic field,
without differential rotation and the α effect (a dynamo model). This kind of dynamo model may be relevant for fully convective stars.
Results. With respect to the solar dynamo, the inclusion
of the additional turbulent induction effects increases the period of
the dynamo and brings the large-scale toroidal field closer
to the equator, thus improving the agreement of the models with the observations.
For the dynamo working in a full sphere, we find dynamo modes that
are steady if the effect of anisotropic diffusion is not included.
The inclusion of anisotropic diffusion
yields a magnetic field oscillating with a period close to the turbulent
magnetic diffusion time.
Key words: stars: magnetic fields / Sun: magnetic fields / magnetohydrodynamics (MHD)
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.