Issue |
A&A
Volume 492, Number 3, December IV 2008
|
|
---|---|---|
Page(s) | 787 - 803 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:200810678 | |
Published online | 27 October 2008 |
The secrets of T Pyxidis
II. A recurrent nova that will not become a SN Ia
1
INAF – Osservatorio Astronomico di Trieste, via Tiepolo 11, Trieste, 34143 Trieste, Italy e-mail: selvelli@ts.astro.it
2
INAF-IFSI, via del Fosso del Cavaliere 100, 00133 Roma, Italy, and Dipartimento di Fisica, Universita' Roma Tre, 00146 Roma, Italy
3
European Southern Observatory, Karl-Schwarzschild-Str 2, 85748 Garching bei München, Germany
4
XMM-Newton Science Operations Centre, ESAC, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain
Received:
25
July
2008
Accepted:
1
October
2008
Aims. We compare the observed and theoretical parameters for the quiescent and outburst phases of the recurring nova T Pyx.
Methods. IUE data were used to derive the disk luminosity and the mass accretion rate, and to exclude the presence of quasi-steady burning at the WD surface. XMM-NEWTON data were used to verify this conclusion.
Results. By various methods, we obtained Ldisk ~ 70 and ~ 1.1 10 yr-1. These values were about twice as high in the pre-1966-outburst epoch. This allowed the first direct estimate of the total mass accreted before outburst, Maccr = , and its comparison with the critical ignition mass Mign. We found Maccr and Mign to be in perfect agreement (with a value close to 5 10) for M1 ~ 1.37 , which provides a confirmation of the thermonuclear runaway theory. The comparison of the observed parameters of the eruption phase, with the corresponding values in the grid of models by Yaron and collaborators, provides satisfactory agreement for values of M1 close to 1.35 and log between -8.0 and -7.0, but the observed value of the decay time t3 is higher than expected. The long duration of the optically thick phase during the recorded outbursts of T Pyx, a spectroscopic behavior typical of classical novae, and the persistence of P Cyg profiles, constrains the ejected mass Mign to within 10-5-10. Therefore, T Pyx ejects far more material than it has accreted, and the mass of the white dwarf will not increase to the Chandrasekhar limit as generally believed in recurrent novae. A detailed study based on the UV data excludes the possibility that T Pyx belongs to the class of the supersoft X-ray sources, as has been postulated. XMM-NEWTON observations have revealed a weak, hard source and confirmed this interpretation.
Key words: stars: novae, cataclysmic variables / stars: supernovae: general / X-rays: binaries / ultraviolet: general
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.