Issue |
A&A
Volume 490, Number 2, November I 2008
|
|
---|---|---|
Page(s) | 521 - 535 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361:200809861 | |
Published online | 09 July 2008 |
Effects of primordial chemistry on the cosmic microwave background
1
Institute of Theoretical Astrophysics / ZAH, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany e-mail: [dschleic;rklessen;mbartelmann]@ita.uni-heidelberg.de
2
INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy e-mail: [galli;palla]@arcetri.astro.it
3
Landessternwarte Heidelberg / ZAH, Koenigstuhl 12, 69117 Heidelberg, Germany e-mail: mcamenzind@lsw.uni-heidelberg.de
4
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: sglover@aip.de
Received:
27
March
2008
Accepted:
3
July
2008
Context. Previous works have demonstrated that the generation of secondary CMB anisotropies due to the molecular optical depth is likely too small to be observed. In this paper, we examine additional ways in which primordial chemistry and the dark ages might influence the CMB.
Aims. We seek a detailed understanding of the formation of molecules in the postrecombination universe and their interactions with the CMB. We present a detailed and updated chemical network and an overview of the interactions of molecules with the CMB.
Methods. We calculate the evolution of primordial chemistry in a homogeneous universe and determine the optical depth due to line absorption, photoionization and photodissociation, and estimate the resulting changes in the CMB temperature and its power spectrum. Corrections for stimulated and spontaneous emission are taken into account.
Results. The most promising results are obtained for the negative hydrogen ion and the
molecule. The free-free process of
yields a relative change in the
CMB temperature of up to 2
10-11, and leads to a frequency-dependent change in the power spectrum of the order 10-7 at 30 GHz. With a change of the order 10-10 in the power spectrum, our result for the bound-free process of
is significantly below a previous suggestion.
efficiently scatters
CMB photons and smears out primordial fluctuations, leading to a change in the power spectrum of the order 10-8.
Conclusions. We demonstrate that primordial chemistry does not alter the CMB during the dark ages of the universe at the significance level of current CMB experiments. We determine and quantify the essential effects that may contribute to changes in the CMB and leave an imprint from the dark ages, thus constituting a potential probe of the early universe.
Key words: molecular processes / atomic processes / cosmology: early Universe / cosmology: cosmic microwave background / cosmology: theory
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.