Issue |
A&A
Volume 488, Number 1, September II 2008
|
|
---|---|---|
Page(s) | L9 - L12 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361:200810356 | |
Published online | 23 July 2008 |
Letter to the Editor
Wavefront error correction and Earth-like planet detection by a self-coherent camera in space
1
LESIA, Observatoire de Paris, CNRS and University Denis Diderot Paris 7, 5 place Jules Janssen, 92195 Meudon, France e-mail: [raphael.galicher;pierre.baudoz;gerard.rousset]@obspm.fr
2
Groupement d'Intérêt Scientifique Partenariat Haute Résolution Angulaire Sol Espace (PHASE) between ONERA, Observatoire de Paris, CNRS and University Denis Diderot Paris 7, France
Received:
9
June
2008
Accepted:
6
July
2008
Context. In the context of exoplanet detection, the performance of coronagraphs is limited by wavefront errors.
Aims. To remove efficiently the effects of these aberrations using a deformable mirror, the aberrations themselves must be measured in the science image to extremely high accuracy.
Methods. The self-coherent camera which is based on the principle of light incoherence between star and its environment can estimate these wavefront errors. This estimation is derived directly from the encoded speckles in the science image, avoiding differential errors due to beam separation and non common optics.
Results. Earth-like planet detection is modeled by numerical simulations with realistic assumptions for a space telescope.
Conclusions. The self-coherent camera is an attractive technique for future space telescopes. It is also one of the techniques under investigation for the E-ELT planet finder the so-called EPICS.
Key words: instrumentation: adaptive optics / instrumentation: high angular resolution / instrumentation: interferometers / techniques: high angular resolution / techniques: image processing
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.