Issue |
A&A
Volume 485, Number 3, July III 2008
|
|
---|---|---|
Page(s) | 837 - 848 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20079192 | |
Published online | 06 May 2008 |
Heating the corona by nanoflares: simulations of energy release triggered by a kink instability
1
Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK e-mail: p.Browning@manchester.ac.uk
2
School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife KY16 9SS, UK
3
SIDC, Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium
Received:
5
December
2007
Accepted:
11
April
2008
Context. The heating of solar coronal plasma to millions of degrees is likely to be due to the superposition of many small energy-releasing events, known as nanoflares. Nanoflares dissipate magnetic energy through magnetic reconnection.
Aims. A model has been recently proposed in which nanoflare-like heating naturally arises, with a sequence of dissipation events of various magnitudes. It is proposed that heating is triggered by the onset of ideal instability, with energy release occurring in the nonlinear phase due to fast magnetic reconnection. The aim is to use numerical simulations to investigate this heating process.
Methods. Three-dimensional magnetohydrodynamic numerical simulations of energy release are presented for a cylindrical coronal loop model. Initial equilibrium magnetic-field profiles are chosen to be linearly unstable, with a two-layer parameterisation of the current profile. The results are compared with calculations of linear instability, with line-tying, which are extended to account for a potential field layer surrounding the loop. The energy release is also compared with predictions that the field relaxes to a state of minimum magnetic energy with conserved magnetic helicity (a constant α force-free field).
Results. The loop initially develops a helical kink, whose structure and growth rate are generally in accordance with linear stability theory, and subsequently a current sheet forms. During this phase, there is a burst of kinetic energy while the magnetic energy decays. A new relaxed equilibrium is established that corresponds quite closely to a constant α field. The fraction of stored magnetic energy released depends strongly on the initial current profile, which agrees with the predictions of relaxation theory.
Conclusions. Energy dissipation events in a coronal loop are triggered by the onset of ideal kink instability. Magnetic energy is dissipated, leading to large or small heating events according to the initial current profile.
Key words: Sun: corona / Sun: magnetic fields / magnetohydrodynamics (MHD) / plasmas
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.