Issue |
A&A
Volume 485, Number 1, July I 2008
|
|
---|---|---|
Page(s) | 127 - 136 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:200809440 | |
Published online | 28 April 2008 |
Radiative transfer revisited for emission lines in photon dominated regions*
LUTH, Observatoire de Paris and Université Paris 7 Place Jansen, 92190 Meudon, France e-mail: [manuel.gonzalez;Jacques.Lebourlot;Franck.Lepetit;Evelyne.Roueff]@obspm.fr
Received:
23
January
2008
Accepted:
6
March
2008
Context. Transfer in lines controls the gas cooling of photon dominated regions (PDR) and provides many of the observational constraints that are available for their modelling.
Aims. The interpretation of infrared and radio observations by the new generation of instruments, such as Herschel, requires sophisticated line radiative-transfer methods. The effect of dust emission on the excitation of molecular species in molecular regions is investigated in detail to explicitly show the origin of various approximations used in the literature. Application to is emphasised.
Methods. The standard 1D radiative transfer equation is written as a function of the space variable (as opposed to the usual optical depth). This permits to simultaneously consider all pumping contributions to a multi-level species in a non-uniform slab of dust and gas. This treatment is included in the Meudon PDR Code (available at http://aristote.obspm.fr/MIS/).
Results. Infrared emission from hot grains at the edge of the PDR may penetrate deep inside the cloud, providing an efficient radiation source to excite some species at a location where cold grains no longer emit. This leads to non-negligible differences with classical escape probability methods for some lines, e.g. water. Cooling efficiency does not follow directly from line emissivities. The infrared pumping contribution leads to a higher excitation that enhances collisional de-excitation and reduces cooling efficiency.
Key words: ISM: general / line: formation / radiative transfer / methods: numerical / ISM: molecules
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.