Issue |
A&A
Volume 479, Number 1, February III 2008
|
|
---|---|---|
Page(s) | L21 - L24 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361:20079237 | |
Published online | 09 January 2008 |
Letter to the Editor
J, H, K spectro-interferometry of the Mira variable S Orionis*
1
ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany e-mail: mwittkow@eso.org
2
US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420, USA
3
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
4
ESO, Casilla 19001, Santiago 19, Chile
5
Institut für Theoretische Astrophysik der Univ. Heidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
6
Institute of Astronomy, School of Physics, University of Sydney, Sydney NSW 2006, Australia
Received:
12
December
2007
Accepted:
29
December
2007
Aims.We present J, H, K spectrally dispersed interferometry with a spectral resolution of 35 for the Mira variable S Orionis. We aim at measuring the diameter variation as a function of wavelength that is expected due to molecular layers lying above the continuum-forming photosphere. Our final goal is a better understanding of the pulsating atmosphere and its role in the mass-loss process.
Methods.Visibility data of S Ori were obtained at phase 0.78 with the VLTI/AMBER instrument using the fringe tracker FINITO at 29 spectral channels between 1.29 μm and 2.32 μm. Apparent uniform disk (UD) diameters were computed for each spectral channel. In addition, the visibility data were directly compared to predictions by recent self-excited dynamic model atmospheres.
Results.S Ori shows significant variations in the visibility values as a function of spectral channel that can only be described by a clear variation in the apparent angular size with wavelength. The closure phase values are close to zero at all spectral channels, indicating the absence of asymmetric intensity features. The apparent UD angular diameter is smallest at about 1.3 μm and 1.7 μm and increases by a factor of ~1.4 around 2.0m. The minimum UD angular diameter at near-continuum wavelengths is mas, corresponding to . The S Ori visibility data and the apparent UD variations can be explained reasonably well by a dynamic atmosphere model that includes molecular layers, particularly water vapor and CO. The best-fitting photospheric angular diameter of the model atmosphere is mas, consistent with the UD diameter measured at near-continuum wavelengths.
Conclusions.The measured visibility and UD diameter variations with wavelength resemble and generally confirm the predictions by recent dynamic model atmospheres. These size variations with wavelength can be understood as the effects from water vapor and CO layers lying above the continuum-forming photosphere. The major remaining differences between observations and model prediction are very likely due to an imperfect match of the phase and cycle combination between observation and available models.
Key words: techniques: interferometric / stars: AGB and post-AGB / stars: atmospheres / stars: individual: S Ori / stars: mass-loss
© ESO, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.