Issue |
A&A
Volume 470, Number 1, July IV 2007
|
|
---|---|---|
Page(s) | 191 - 210 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20077168 | |
Published online | 16 May 2007 |
The Mira variable S Orionis: relationships between the photosphere, molecular layer, dust shell, and SiO maser shell at 4 epochs *,**,***,****
1
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany e-mail: mwittkow@eso.org
2
United States Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420, USA e-mail: dboboltz@usno.navy.mil
3
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
4
Institut für Theoretische Astrophysik der Univ. Heidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
5
Institute of Astronomy, School of Physics, University of Sydney, Sydney NSW 2006, Australia
Received:
25
January
2007
Accepted:
18
April
2007
Aims.We present the first multi-epoch study that includes concurrent mid-infrared and radio interferometry of an oxygen-rich Mira star.
Methods.We obtained mid-infrared interferometry of
S Ori with VLTI/MIDI at four epochs in December 2004,
February/March 2005, November 2005, and December 2005.
We concurrently observed ,
(43.1 GHz),
and
(42.8 GHz) SiO maser emission toward S Ori
with the VLBA in January, February, and November 2005.
The MIDI data are analyzed using self-excited dynamic
model atmospheres including molecular layers,
complemented by a radiative transfer model of the circumstellar dust shell.
The VLBA data are reduced to the spatial structure and kinematics
of the maser spots.
Results.The modeling of our MIDI data results in phase-dependent
continuum photospheric angular diameters
of 9.0 ± 0.3 mas (phase 0.42), 7.9 ± 0.1 mas (0.55),
9.7 ± 0.1 mas (1.16), and 9.5 ± 0.4 mas (1.27).
The dust shell can best be modeled with Al2O3 grains using
phase-dependent inner boundary radii between 1.8 and 2.4 photospheric radii.
The dust shell appears to be more compact with greater optical depth near
visual minimum (), and more extended with lower optical
depth after visual maximum (
).
The ratios of the 43.1 GHz/42.8 GHz SiO maser ring radii
to the photospheric radii are
2.2 ± 0.3/2.1 ± 0.2 (phase 0.44),
2.4 ± 0.3/2.3 ± 0.4 (0.55),
and 2.1 ± 0.3/1.9 ± 0.2 (1.15).
The maser spots mark the region of the molecular
atmospheric layers just beyond the steepest decrease in the
mid-infrared model intensity profile. Their velocity structure
indicates a radial gas expansion.
Conclusions.S Ori shows significant phase-dependences of photospheric radii
and dust shell parameters. Al2O3 dust grains and
SiO maser spots form at relatively small radii of ~ photospheric radii.
Our results suggest increased mass loss and dust formation
close to the surface near the minimum visual phase, when Al2O3 dust
grains are co-located with the molecular gas and the
SiO maser shells,
and a more expanded dust shell after visual maximum.
Silicon does not appear to be bound in dust, as
our data show no sign of silicate grains.
Key words: techniques: interferometric / masers / stars: AGB and post-AGB / stars: atmospheres / stars: mass-loss / stars: individual: S Orionis
Based on observations made with the Very Large Telescope Interferometer (VLTI) at the Paranal Observatory under program IDs 074.D-0075 and 076.D-0338.
Based on observations made with the Very Long Baseline Array (VLBA) under project BB192. The VLBA is operated by the National Radio Astronomy Observatory (NRAO). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associate Universities, Inc.
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.