Issue |
A&A
Volume 477, Number 2, January II 2008
|
|
---|---|---|
Page(s) | 397 - 406 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361:20077534 | |
Published online | 06 November 2007 |
Cosmological parameters from strong gravitational lensing and stellar dynamics in elliptical galaxies
1
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany e-mail: cgrillo@eso.org
2
Università degli Studi di Milano, Department of Physics, via Celoria 16, 20133 Milan, Italy
Received:
23
March
2007
Accepted:
26
October
2007
Context.Observations of the cosmic microwave background, light element abundances, large-scale distribution of galaxies, and distant supernovae are the primary tools for determining the cosmological parameters that define the global structure of the Universe.
Aims.Here we illustrate how the combination of observations related to strong gravitational lensing and stellar dynamics in elliptical galaxies offers a simple and promising way to measure the cosmological matter and dark-energy density parameters.
Methods.A gravitational lensing estimate of the mass enclosed inside the
Einstein circle can be obtained by measuring the Einstein
angle, once the critical density of the system is known. A
model-dependent dynamical estimate of this mass can also be obtained
by measuring the central velocity dispersion of the stellar
component. By assuming the well-tested homologous
(isothermal) profile for the total (luminous+dark) density
distribution in elliptical galaxies acting as lenses, these two mass
measurements can be properly compared. Thus, a relation between the
Einstein angle and the central stellar velocity dispersion is
derived, and the cosmological matter and the dark-energy
density parameters can be estimated from this.
Results.We determined the accuracy of the cosmological parameter estimates by means of simulations that include realistic measurement uncertainties on the relevant quantities. Interestingly, the expected constraints on the cosmological parameter plane are complementary to those coming from other observational techniques. Then, we applied the method to the recent data sets of the Sloan Lens ACS (SLACS) and the Lenses Structure and Dynamics (LSD) Surveys, and showed that the concordance value between 0.7 and 0.8 for the dark-energy density parameter is included in our 99% confidence regions.
Conclusions.The small number of lenses available to date prevents us from precisely determining the cosmological parameters, but it still proves the feasibility of the method. When applied to samples made of hundreds of lenses that are expected to become available from forthcoming deep and wide surveys, this technique will be an important alternative tool for measuring the geometry of the Universe.
Key words: cosmology: theory / cosmology: observations / galaxies: distances and redshifts / galaxies: kinematics and dynamics / galaxies: elliptical and lenticular, cD / gravitational lensing
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.