Issue |
A&A
Volume 476, Number 3, December IV 2007
|
|
---|---|---|
Page(s) | 1151 - 1160 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20077962 | |
Published online | 09 October 2007 |
A synchrotron self-Compton model with low-energy electron cut-off for the blazar S5 0716+714
Max-Planck-Institut-für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany e-mail: olivia.tsang@mpi-hd.mpg.de
Received:
28
May
2007
Accepted:
6
September
2007
Context.In a self-absorbed synchrotron source with power-law electrons,
rapid inverse Compton cooling sets in when the brightness
temperature of the source reaches 1012 K. However, brightness temperatures inferred from
observations of intra-day variable sources (IDV) are well above the
“Compton catastrophe” limit. This can be understood if the
underlying electron distribution cuts off at low energy.
Aims.We examine the compatibility of the synchrotron and inverse Compton emission of an electron distribution with low-energy cut-off with that of IDV sources, using the observed spectral energy distribution of S5 0716+714 as an example.
Methods.We compute the synchrotron self-Compton (SSC) spectrum of monoenergetic electrons and compare it to the observed spectral energy distribution (SED) of S5 0716+714. The hard radio spectrum is well-fitted by this model, and the optical data can be accommodated by a power-law extension to the electron spectrum. We therefore examine the scenario of an injection of electrons, which is a double power law in energy, with a hard low-energy component that does not contribute to the synchrotron opacity.
Results.We show that the double power-law injection model is in good
agreement with the observed SED of S5 0716+714. For intrinsic
variability, we find that a Doppler factor of ≥30 can
explain the observed SED provided that low-frequency (<32 GHz)
emission originates from a larger region than the higher-frequency
emission. To fit the entire spectrum,
≥65 is needed. We find
the constraint imposed by induced Compton scattering at high
is insignificant in our model.
Conclusions.We confirm that electron distribution with a low-energy cut-off can explain the high brightness temperature in compact radio sources. We show that synchrotron spectrum from such distributions naturally accounts for the observed hard radio continuum with a softer optical component, without the need for an inhomogeneous source. The required low energy electron distribution is compatible with a relativistic Maxwellian.
Key words: galaxies: active / galaxies: high-redshift / galaxies: jets / BL Lacertae objects: individual: S5 0716+714
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.