Issue |
A&A
Volume 463, Number 1, February III 2007
|
|
---|---|---|
Page(s) | 145 - 152 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20066502 | |
Published online | 20 November 2006 |
The inverse Compton catastrophe and high brightness temperature radio sources*
Max-Planck-Institut-für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany e-mail: olivia.tsang@mpi-hd.mpg.de
Received:
3
October
2006
Accepted:
15
November
2006
Context.The inverse Compton catastrophe is the dramatic rise in the luminosity of inverse-Compton scattered photons predicted to occur when the synchrotron brightness temperature exceeds a threshold value, usually estimated to be 1012 K. However, this effect appears to be in contradiction with observation because: (i) the threshold is substantially exceeded by several intra-day variable radio sources, but the inverse Compton emission is not observed, (ii) powerful, extra-galactic radio sources of known angular size do not appear to congregate close to the predicted maximum brightness temperature.
Aims.We re-examine the parameter space available to synchrotron sources using a non-standard electron distribution, in order to see whether the revised threshold temperature is consistent with the data.
Methods.We apply the theory of synchrotron radiation to a population of monoenergetic electrons. The electron distribution and the population of each generation of scattered photons are computed using spatially averaged equations. The results are formulated in terms of the electron Lorentz factors that characterise sources at the threshold temperature and sources in which the particle and magnetic field energy density are in equipartition.
Results.We confirm our previous finding that intrinsic brightness temperatures
K can occur without
catastrophic cooling. We show that substantially higher temperatures cannot
be achieved either in transitory solutions or in solutions
that balance losses with a powerful acceleration mechanism.
Depending on the observing frequency, we find
strong cooling can set in at a range of threshold temperatures and
the imposition of the additional constraint of equipartition between particle and
magnetic field energy is not warranted by the data.
Conclusions.Postulating a monoenergetic electron distribution, which approximates one
that is truncated below
a certain Lorentz factor (), alleviates several
theoretical difficulties associated with the inverse Compton catastrophe,
including anomalously high brightness temperatures and the apparent
lack of clustering of powerful sources at 1012 K.
Key words: galaxies: active / galaxies: high-redshift / galaxies: jets
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.