Issue |
A&A
Volume 475, Number 1, November III 2007
|
|
---|---|---|
Page(s) | 359 - 368 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361:20077397 | |
Published online | 28 August 2007 |
Predicting low-frequency radio fluxes of known extrasolar planets *,**
1
LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot; 5 Place Jules Janssen, 92190 Meudon, France e-mail: [jean-mathias.griessmeier;philippe.zarka]@obspm.fr
2
Astronomical Institute “Anton Pannekoek”, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands e-mail: hspreeuw@science.uva.nl
Received:
3
March
2007
Accepted:
18
August
2007
Context. Close-in giant extrasolar planets (“Hot Jupiters”) are believed to be strong emitters in the decametric radio range.
Aims.We present the expected characteristics of the low-frequency magnetospheric radio emission of all currently known extrasolar planets, including the maximum emission frequency and the expected radio flux. We also discuss the escape of exoplanetary radio emission from the vicinity of its source, which imposes additional constraints on detectability.
Methods.We compare the different predictions obtained with all four existing analytical models for all currently known exoplanets. We also take care to use realistic values for all input parameters.
Results. The four different models for planetary radio emission lead to very different results. The largest fluxes are found for the magnetic energy model, followed by the CME model and the kinetic energy model (for which our results are found to be much less optimistic than those of previous studies). The unipolar interaction model does not predict any observable emission for the present exoplanet census. We also give estimates for the planetary magnetic dipole moment of all currently known extrasolar planets, which will be useful for other studies.
Conclusions.Our results show that observations of exoplanetary radio emission are feasible, but that the number of promising targets is not very high. The catalog of targets will be particularly useful for current and future radio observation campaigns (e.g. with the VLA, GMRT, UTR-2 and with LOFAR).
Key words: radiation mechanisms: non-thermal / catalogs / plasmas / planets and satellites general
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.