Issue |
A&A
Volume 467, Number 3, June I 2007
|
|
---|---|---|
Page(s) | 1253 - 1264 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20066604 | |
Published online | 26 March 2007 |
Central stars of planetary nebulae in the Galactic bulge *,**
1
Universitäts-Sternwarte München (USM), Scheinerstr. 1, 81679 München, Germany
2
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
Received:
20
October
2006
Accepted:
27
February
2007
Context.Optical high-resolution spectra of five central stars of planetary nebulae (CSPN) in the Galactic bulge have been obtained with Keck/HIRES in order to derive their parameters. Since the distance of the objects is quite well known, such a method has the advantage that stellar luminosities and masses can in principle be determined without relying on theoretical relations between both quantities.
Aims.By alternatively combining the results of our spectroscopic investigation with evolutionary tracks, we obtain so-called spectroscopic distances, which can be compared with the known (average) distance of the bulge-CSPN. This offers the possibility to test the validity of model atmospheres and present date post-AGB evolution.
Methods.We analyze optical H/He profiles of five Galactic bulge CSPN (plus one
comparison object) by means of profile fitting based on state of the art
non-LTE modeling tools, to constrain their basic atmospheric parameters
(,
, helium abundance and wind strength). Masses and other
stellar radius dependent quantities are obtained from both the known
distances and from evolutionary tracks, and the results from both approaches
are compared.
Results.The major result of the present investigation is that the derived spectroscopic distances depend crucially on the applied reddening law. Assuming either standard reddening or values based on radio-Hβ extinctions, we find a mean distance of 9.0±1.6 kpc and 12.2±2.1 kpc, respectively. An “average extinction law” leads to a distance of 10.7±1.2 kpc, which is still considerably larger than the Galactic center distance of 8 kpc. In all cases, however, we find a remarkable internal agreement of the individual spectroscopic distances of our sample objects, within ±10% to ±15% for the different reddening laws.
Conclusions.Due to the uncertain reddening correction, the analysis presented here cannot yet be regarded as a consistency check for our method, and a rigorous test of the CSPN evolution theory becomes only possible if this problem has been solved.
Key words: stars: atmospheres / stars: fundamental parameters / stars: winds, outflows / stars: distances
The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.