Issue |
A&A
Volume 466, Number 3, May II 2007
|
|
---|---|---|
Page(s) | 1005 - 1012 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20066272 | |
Published online | 24 April 2007 |
Desorption of CO and O2 interstellar ice analogs*
1
Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands e-mail: acharyya@strw.leidenuniv.nl
2
Centre For Space Physics, 43 Chalantika, Garia, Kolkata, 720084, India
3
Department of Physics SUPA (Scottish Universities Physics Alliance), University of Strathclyde, 107 Rottenrow East, Glasgow G4 ONG, Scotland
Received:
18
August
2006
Accepted:
30
January
2007
Aims.Solid O2 has been proposed as a possible reservoir for molecular oxygen in dense clouds through freeze-out processes. The aim of this work is to characterize quantitatively the physical processes that are involved in the desorption kinetics of CO–O2 ices by interpreting laboratory temperature programmed desorption (TPD) data. This information is used to simulate the behavior of CO–O2 ices under astrophysical conditions.
Methods.The TPD spectra have been recorded under ultra high vacuum conditions for pure, layered and mixed morphologies for different thicknesses, temperatures and mixing ratios. An empirical kinetic model is used to interpret the results and to provide input parameters for astrophysical models.
Results.Binding
energies are determined for different ice morphologies. Independent of
the ice morphology, the desorption of O2 is found to follow
0th-order kinetics. Binding energies and temperature-dependent
sticking probabilities for CO–CO, O2–O2 and CO–O2 are
determined. O2 is slightly less volatile than CO, with a binding
energy of versus
K for pure ices. In mixed and
layered ices, CO does not co-desorb with O2 but its binding
energy is slightly increased compared to pure ice whereas that
of O2 is slightly decreased. Lower limits to the sticking
probabilities of CO and O2 are 0.9 and 0.85, respectively, at
temperatures below 20 K. The balance between accretion and
desorption is studied for O2 and CO in astrophysically relevant
scenarios. Only minor differences are found between the two species,
i.e., both desorb between 16 and 18 K in typical environments around
young stars. Thus, clouds with significant abundances of gaseous CO
are unlikely to have large amounts of solid O2.
Key words: ISM: dust, extinction / ISM: molecules / methods: laboratory / molecular processes / ISM: clouds / astrochemistry
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.