Issue |
A&A
Volume 465, Number 1, April I 2007
|
|
---|---|---|
Page(s) | 197 - 205 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20065770 | |
Published online | 02 January 2007 |
Sub-arcsecond resolution radio continuum observations of IRAS 20126+4104 *
1
Physics Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA e-mail: phofner@nrao.edu
2
National Radio Astronomy Observatory, PO Box O, Socorro, NM 87801, USA
3
INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
4
Physics Department, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico 00931, USA
5
Centro de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72, 58089 Morelia, Michoacan, México
6
Departamento de Física, Escuela Politécnica Superior, Universidad de Jaén, Calle Virgen de la Cabeza 2, 23071 Jaén, Spain
Received:
7
June
2006
Accepted:
27
October
2006
Context.The detailed physical processes that lead to the formation of massive
stars are still unknown. Observations that probe linear scales as small
as AU are necessary for improving our understanding in this area.
Aims. We present high angular-resolution and high-sensitivity multi-frequency radio observations of the deeply embedded massive protostar located in the IRAS 20126+4104 core region, with the aim of investigating the nature of the radio continuum emission from the deeply embedded massive protostar.
Methods. The observations were performed with the Very Large Array in several continuum bands with wavelengths between 20 and 0.7 cm in the A and/or B configurations.
Results. At 3.6 cm we resolve the emission of the IRAS 20126+4104 core into 3 components. The emission from the two northern sources is consistent with free-free emission from ionized gas with a density gradient. Most likely the ionization is caused by UV radiation from the cooling region of a shock; i.e. the ionization is caused by the jet driven by the IRAS 20126+4104 protostar. The morphology and measured flux densities of the southern source is consistent with emission from an optically thin jet, most likely also due to shock ionization. A simple radiative transfer model shows that the spectral energy distribution of IRAS 20126+4104 is consistent with an accretion disk embedded in a spherical halo. We also report the discovery of a highly variable radio source near the IRAS 20126+4104 core, which is most likely gyrosynchotron emission from a low-mass pre-main sequence star.
Key words: stars: formation / ISM: jets and outflows / ISM: individual objects: IRAS 20126+4104
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.