Issue |
A&A
Volume 463, Number 2, February IV 2007
|
|
---|---|---|
Page(s) | 745 - 753 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20066314 | |
Published online | 23 November 2006 |
Intensity variations inside supergranules
1
Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées, Université Paul Sabatier Toulouse III, CNRS, 57 avenue d'Azereix, BP 826, 65008 Tarbes Cedex, France e-mail: [nadege.meunier;thierry.roudier]@ast.obs-mip.fr
2
Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées, Université Paul Sabatier Toulouse III, CNRS, 14 avenue Edouard Belin, 31000 Toulouse, France e-mail: ruben.tkaczuk@ast.obs-mip.fr
Received:
29
August
2006
Accepted:
24
October
2006
Context.The convective origin of supergranulation is highly controversial. Past measurements of intensity variations inside supergranules have often been influenced by the brightness enhancement at the cell boundaries due to the magnetic network.
Aims.We conduct a precise determination of intensity variations inside supergranules.
Methods.We determine the supergranule cell boundary from smoothed divergence maps derived from horizontal flow maps. We derive these flow maps from intensity maps obtained by MDI/SOHO in high resolution mode. We discuss the different possible approaches to take into account the influence of the magnetic field which can be used to determine the intensity variations inside supergranules.
Results.We observe a significant decrease of the intensity from the center to the boundary of supergranules. We also obtain additional clues from the behavior of the maximum intensities and minimum intensities around each pixel, which are related to granules and intergranules: the maximum intensity decreases from center to boundary, while the minimum intensity is constant or increases depending how restrictive the selection is. The difference between intensity profiles versus divergence and relative distance to cell center also provides complementary information. The corresponding temperature differences between cell center and boundary are in the range 0.8–2.8 K. The intensity enhancement (for the magnetic network) or deficit (for intranetwork fields) depends on the localisation inside the cell.
Conclusions.It is the first time that such a detailed analysis of intensity variations inside supergranulation is performed. Our results are compatible with a convective origin of supergranulation, as the intensity decreases toward the boundary of the cells. However, new simulations of supergranulation are necessary to verify whether the compared behavior of granule and intergranule intensity variations is in close agreement with convection.
Key words: Sun: granulation / Sun: photosphere / Sun: general
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.