Issue |
A&A
Volume 461, Number 3, January III 2007
|
|
---|---|---|
Page(s) | 1141 - 1147 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20065625 | |
Published online | 11 October 2006 |
Velocities and divergences as a function of supergranule size
1
Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées, Université Paul Sabatier Toulouse III, CNRS, 57 avenue d'Azereix, BP 826, 65008 Tarbes Cedex, France e-mail: [nadege.meunier;thierry.roudier]@ast.obs-mip.fr
2
Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées, Université Paul Sabatier Toulouse III, CNRS, 14 avenue Édouard Belin, 31400 Toulouse, France e-mail: [ruben.tkaczuk;michel.rieutord]@ast.obs-mip.fr
Received:
17
May
2006
Accepted:
23
September
2006
Context.The origin of supergranulation is not understood yet and many scenarios, which range from large-scale deep convection to large-scale instabilities of surface granular flows, are possible.
Aims.We characterize the velocities and divergences in supergranulation cells as a function of their size.
Methods. Using local correlation tracking, we determine the horizontal flow fields from MDI intensity maps and derive the divergences. The smoothed divergences are used to determine the cells for various spatial smoothings, in particular at the supergranular scale.
Results.
We find evidence of intermittency in the supergranular range and a
correlation between the size of supergranules and the strength of the
diverging flow. We also show that the relation between rms velocities
and scale (the supergranule radius R) can be represented by a law
.
Conclusions. The results issued from our data point towards a scenario where supergranulation is a surface phenomenon of the sun, probably the consequence of a large-scale instability triggered by strong positive correlated rising flows.
Key words: Sun: granulation / Sun: photosphere / Sun: general
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.