Issue |
A&A
Volume 463, Number 1, February III 2007
|
|
---|---|---|
Page(s) | 79 - 96 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20066334 | |
Published online | 13 November 2006 |
The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era
1
Istituto Nazionale di Astrofisica (INAF) - Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: roberto.gilli@oabo.inaf.it
2
Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, 85741 Garching, Germany
Received:
1
September
2006
Accepted:
29
October
2006
We present a detailed and self-consistent modeling of the
cosmic X-ray background (XRB) based on the most up-to-date X-ray
luminosity functions (XLF) and evolution of Active Galactic Nuclei
(AGN). The large body of observational results collected by soft
(0.5–2 keV) and hard (2–10 keV) X-ray surveys are used to constrain at
best the properties of the Compton-thin AGN population and its
contribution to the XRB emission. The number ratio R between
moderately obscured (Compton-thin) AGN and unobscured AGN is fixed by
the comparison between the soft and hard XLFs, which suggests that R
decreases from 4 at low luminosities to 1 at high luminosities.
From the same comparison there is no clear evidence of an evolution of
the obscured AGN fraction with redshift. The distribution of the
absorbing column densities in obscured AGN is determined by matching
the soft and hard source counts. A distribution rising towards larger
column densities is able to reproduce the soft and hard AGN counts
over about 6 dex in flux. The model also reproduces with excellent
accuracy the fraction of obscured objects in AGN samples selected at
different X-ray fluxes. The integrated emission of the Compton-thin
AGN population is found to underestimate the XRB flux at about 30 keV,
calling for an additional population of extremely obscured
(Compton-thick) AGN. Since the number of Compton-thick sources
required to fit the 30 keV XRB emission strongly depends on the
spectral templates assumed for unobscured and moderately obscured AGN,
we explored the effects of varying the spectral templates. In
particular, in addition to the column density distribution, we also
considered a distribution in the intrinsic powerlaw spectral indices
of variable width. In our baseline model a Gaussian distribution of
photon indices with mean and dispersion
is assumed. This increases the contribution of
the Compton-thin AGN population to the 30 keV XRB intensity by ~
with respect to the case of null dispersion (i.e. a single
primary AGN powerlaw with
) but is not sufficient to match
the 30 keV XRB emission. Therefore a population of heavily obscured
-Compton-thick- AGN, as large as that of moderately obscured AGN, is
required to fit the residual background emission. Remarkably, the
fractions of Compton-thick AGN observed in the Chandra Deep Field
South and in the first INTEGRAL and Swift catalogs of AGN selected
above 10 keV are in excellent agreement with the model predictions.
Key words: X-rays: galaxies / galaxies: active / X-rays: general / cosmology: diffuse radiation / X-rays: diffuse background
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.