Issue |
A&A
Volume 456, Number 2, September III 2006
|
|
---|---|---|
Page(s) | 493 - 504 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361:20065310 | |
Published online | 31 August 2006 |
The role of Kelvin-Helmholtz instability in the internal structure of relativistic outflows. The case of the jet in 3C 273
1
Departament d'Astronomia i Astrofísica, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Spain
2
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: perucho@mpifr-bonn.mpg.de
3
Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
Received:
29
March
2006
Accepted:
15
May
2006
Context.Relativistic outflows represent one of the best-suited tools to probe the physics of AGN. Numerical modelling of internal structure of the relativistic outflows on parsec scales provides important clues about the conditions and dynamics of the material in the immediate vicinity of the central black holes in AGN.
Aims.We investigate possible causes of the structural patterns and regularities observed in the parsec-scale jet of the well-known quasar 3C 273.
Methods.We present here the results from a 3D relativistic hydrodynamics numerical simulation based on the parameters given for the jet by Lobanov & Zensus (2001, Science, 294, 128), and one in which the effects of jet precession and the injection of discrete components have been taken into account. We compare the model with the structures observed in 3C 273 using very long baseline interferometry and constrain the basic properties of the flow.
Results.We find growing perturbation modes in the simulation with similar wavelengths to those observed, but with a different set of wave speeds and mode identification. If the observed longest helical structure is produced by the precession of the flow, longer precession periods should be expected.
Conclusions.Our results show that some of the observed structures could be explained by growing Kelvin-Helmholtz instabilities in a slow moving region of the jet. However, we point towards possible errors in the mode identification that show the need of more complete linear analysis in order to interpret the observations. We conclude that, with the given viewing angle, superluminal components and jet precession cannot explain the observed structures.
Key words: galaxies: quasars: individual: 3C 273 / galaxies: active / galaxies: jets / hydrodynamics
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.