Issue |
A&A
Volume 456, Number 1, September II 2006
|
|
---|---|---|
Page(s) | 215 - 223 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20065375 | |
Published online | 23 August 2006 |
The abundances of nitrogen-containing molecules during pre-protostellar collapse
1
Physics Department, The University, Durham DH1 3LE, UK e-mail: david.flower@durham.ac.uk
2
IAS (UMR 8617 du CNRS), Université de Paris-Sud, 91405 Orsay, France
3
LERMA (UMR 8112 du CNRS), Observatoire de Paris, 61 avenue de l'Observatoire, 75014 Paris, France
4
INAF, Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy
Received:
6
April
2006
Accepted:
5
June
2006
Aims.We have studied the chemistry of nitrogen-bearing species during the initial stages of protostellar collapse, with a view to explaining the observed longevity of N2H+ and NH3 and the high levels of deuteration of these species.
Methods.We followed the chemical evolution of a medium comprising gas and dust as it underwent free-fall gravitational collapse. Chemical processes which determine the relative populations of the nuclear spin states of molecules and molecular ions were included explicitly, as were reactions which lead ultimately to the deuteration of the nitrogen-containing species N2H+ and NH3. The freeze-out of “heavy” molecules on to dust grains was taken into account.
Results.We found that the timescale required for the nitrogen-containing species to attain their steady-state values was much larger than the free-fall time and even comparable with the probable lifetime of the precursor molecular cloud. However, it transpires that the chemical evolution of the gas during gravitational collapse is insensitive to its initial composition. If we suppose that the grain-sticking probabilities of atomic nitrogen and atomic oxygen are both less than unity (), we find that the observed differential freeze-out of nitrogen- and carbon-bearing species can be reproduced by the model of free-fall collapse when a sufficiently large grain radius ( μm) is adopted. Furthermore, the results of our collapse model are consistent with the high levels of deuteration of N2H+ and NH3 which have been observed in L1544, for example, providing that μm. We note that the ortho:para H2D+ ratio, and fractional abundance of ortho-H2D+, which is the observed form of H2D+, should be largest where ND3 is most abundant.
Key words: astrochemistry / stars: formation / ISM: dust, extinction / ISM: molecules
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.