Issue |
A&A
Volume 455, Number 1, August III 2006
|
|
---|---|---|
Page(s) | 349 - 359 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20064806 | |
Published online | 31 July 2006 |
A new model-independent method to compute magnetic helicity in magnetic clouds
1
Instituto de Astronomía y Física del Espacio, IAFE, CC. 67 Suc. 28, 1428 Buenos Aires, Argentina e-mail: [sdasso;mandrini;mluoni]@iafe.uba.ar
2
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
3
Observatoire de Paris, LESIA, UMR 8109 (CNRS), 92195 Meudon Cedex, France e-mail: pascal.demoulin@obspm.fr
Received:
3
January
2006
Accepted:
18
April
2006
Context.Magnetic clouds are transient magnetic structures expulsed from the Sun that travel toward the external heliosphere carrying a significant amount of magnetic flux and helicity.
Aims.To improve our understanding of magnetic clouds in relation to their solar source regions, we need a reliable method to compute magnetic flux and helicity in both regions. Here we evaluate the sensitivity of the results using different models, methods and magnetic cloud boundaries applied to the same magnetic cloud data.
Methods.The magnetic cloud was observed by the spacecraft Wind on October 18–20, 1995. We analyze this cloud considering four different theoretical configurations (two force free and two non-force free) that have been previously proposed to model cloud fields. These four models are applied using two methods to determine the orientation of the cloud axis: minimum variance and simultaneous fitting. Finally, we present a new method to obtain the axial and azimuthal magnetic fluxes and helicity directly from the observed magnetic field when rotated to the cloud frame.
Results.The results from the fitted models have biases that we analyze. The new method determines the centre and the rear boundary of the flux rope when the front boundary is known. It also gives two independent measurements in the front and back parts for the fluxes and helicity; they are free of model and boundary biases. We deduce that the leading flux of the magnetic cloud had reconnected with the overtaken solar wind magnetic field and estimate the fluxes and helicity present in the full cloud before this reconnection.
Key words: Sun: coronal mass ejections (CMEs) / Sun: magnetic fields / interplanetary medium
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.