Issue |
A&A
Volume 535, November 2011
|
|
---|---|---|
Article Number | A52 | |
Number of page(s) | 16 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201015853 | |
Published online | 03 November 2011 |
Dynamical evolution of a magnetic cloud from the Sun to 5.4 AU
1
Instituto de Astronomia, Geofísica e Ciências Atmosféricas,
Universidade de São Paulo, Brazil
e-mail: sole@astro.iag.usp.br
2
Instituto de Astronomía y Física del Espacio,
CONICET-UBA,
Argentina
3
Departamento de Física, Facultad de Ciencias Exactas y
Naturales, UBA,
Argentina
4
Observatoire de Paris, LESIA, UMR 8109 CNRS, 92195
Meudon Principal Cedex,
France
5
Facultad de Ciencias Exactas y Naturales, FCEN, UBA, Argentina
Received:
1
October
2010
Accepted:
28
July
2011
Context. Significant quantities of magnetized plasma are transported from the Sun to the interstellar medium via interplanetary coronal mass ejections (ICMEs). Magnetic clouds (MCs) are a particular subset of ICMEs, forming large-scale magnetic flux ropes. Their evolution in the solar wind is complex and mainly determined by their own magnetic forces and the interaction with the surrounding solar wind.
Aims. Magnetic clouds are strongly affected by the surrounding environment as they evolve in the solar wind. We study expansion of MCs, its consequent decrease in magnetic field intensity and mass density, and the possible evolution of the so-called global ideal-MHD invariants.
Methods. In this work we analyze the evolution of a particular MC (observed in March 1998) using in situ observations made by two spacecraft approximately aligned with the Sun, the first one at 1 AU from the Sun and the second one at 5.4 AU. We describe the magnetic configuration of the MC using different models and compute relevant global quantities (magnetic fluxes, helicity, and energy) at both heliodistances. We also tracked this structure back to the Sun, to find out its solar source.
Results. We find that the flux rope is significantly distorted at 5.4 AU. From the observed decay of magnetic field and mass density, we quantify how anisotropic is the expansion and the consequent deformation of the flux rope in favor of a cross section with an aspect ratio at 5.4 AU of ≈1.6 (larger in the direction perpendicular to the radial direction from the Sun). We quantify the ideal-MHD invariants and magnetic energy at both locations, and find that invariants are almost conserved, while the magnetic energy decays as expected with the expansion rate found.
Conclusions. The use of MHD invariants to link structures at the Sun and the interplanetary medium is supported by the results of this multi-spacecraft study. We also conclude that the local dimensionless expansion rate, which is computed from the velocity profile observed by a single-spacecraft, is very accurate for predicting the evolution of flux ropes in the solar wind.
Key words: magnetohydrodynamics (MHD) / magnetic fields / solar wind / Sun: heliosphere / Sun: magnetic topology / Sun: coronal mass ejections (CMEs)
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.