Issue |
A&A
Volume 454, Number 2, August I 2006
APEX Special Booklet
|
|
---|---|---|
Page(s) | 625 - 651 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361:20065073 | |
Published online | 11 July 2006 |
Bright OB stars in the Galaxy
III. Constraints on the radial stratification of the clumping
factor in hot star winds from a combined H
, IR and radio
analysis
1
Universitäts-Sternwarte München, Scheinerstr. 1, 81679 München, Germany e-mail: uh101aw@usm.uni-muenchen.de
2
Institute of Astronomy, Bulgarian National Astronomical Observatory, PO Box 136, 4700 Smoljan, Bulgaria e-mail: nmarkova@astro.bas.bg
3
INAF – Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy e-mail: scuderi@oact.inaf.it
4
INAF – Istituto di Radioastronomia, via P. Gobetti 101, 40129 Bologna, Italy e-mail: c.stanghellini@ira.inaf.it
5
Sternberg Astronomical Institute, Universitetski PR. 13, Moscow 119992, Russia e-mail: taranova@sai.msu.ru
6
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK e-mail: [awxb;idh]@star.ucl.ac.uk
Received:
23
February
2006
Accepted:
13
April
2006
Context.Recent results strongly challenge the canonical picture of
massive star winds: various evidence indicates that currently accepted
mass-loss rates, , may need to be revised downwards, by factors
extending to one magnitude or even more. This is because the most commonly
used mass-loss diagnostics are affected by “clumping” (small-scale density
inhomogeneities), influencing our interpretation of observed spectra and
fluxes.
Aims.Such downward revisions would have dramatic consequences for the evolution of, and feedback from, massive stars, and thus robust determinations of the clumping properties and mass-loss rates are urgently needed. We present a first attempt concerning this objective, by means of constraining the radial stratification of the so-called clumping factor.
Methods.To this end, we have analyzed a sample of 19 Galactic O-type supergiants/giants, by combining our own and archival data for H\alpha, IR, mm and radio fluxes, and using approximate methods, calibrated to more sophisticated models. Clumping has been included into our analysis in the “conventional” way, by assuming the inter-clump matter to be void. Because (almost) all our diagnostics depends on the square of density, we cannot derive absolute clumping factors, but only factors normalized to a certain minimum.
Results.This minimum was usually found to be located in the outermost, radio-emitting
region, i.e., the radio mass-loss rates are the lowest ones,
compared to derived from H\alpha and the IR. The radio rates agree well
with those predicted by theory, but are only upper limits, due to unknown
clumping in the outer wind. H\alpha turned out to be a useful tool to derive
the clumping properties inside
. Our most
important result concerns a (physical) difference between denser and thinner
winds: for denser winds, the innermost region is more strongly clumped than
the outermost one (with a normalized clumping factor of
),
whereas thinner winds have similar clumping properties in the inner and
outer regions.
Conclusions.Our findings are compared with theoretical predictions, and the implications are discussed in detail, by assuming different scenarios regarding the still unknown clumping properties of the outer wind.
Key words: infrared: stars / radio continuum: stars / stars: early-type / stars: winds, outflows / stars: mass-loss
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.