Issue |
A&A
Volume 453, Number 2, July II 2006
|
|
---|---|---|
Page(s) | 755 - 759 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361:20064952 | |
Published online | 16 June 2006 |
Nuclear spin conversion of formaldehyde in protostar environments induced by non reactive collisions
1
Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, CERLA, Centre Lasers et Applications, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France e-mail: Patrice.Cacciani@univ-lille1.fr
2
Dipartimento di Chimica “G. Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
3
Laboratoire d'Astrophysique de Grenoble, BP 53, 38041 Grenoble Cedex 9, France
Received:
2
February
2006
Accepted:
7
March
2006
Context.Formaldehyde is an important diagnostic of the physical conditions in star forming regions. The temperature of formation is determined by measuring the relative abundance of para-H2CO and ortho-H2CO. The key hypothesis for this determination is that the ortho-para interconversion is strictly forbidden once the molecule is formed. However H2CO nuclear spin conversion mechanisms do exist in a gas phase either involving reactive or non-reactive collisions. This last process is governed by internal properties of the molecule, such as the mixing of energetically closed ortho-para level pairs, which are coupled through magnetic intramolecular interactions. This mixing is interrupted by a collision that makes the molecule leave the mixed state and puts it in a pure state, ortho or para, with a non zero probability for both isomeric forms.
Aims.This model allows us to estimate the spin conversion induced by non reactive collisions in different conditions encountered in the interstellar medium.
Methods.We calculated the ortho-para conversion rate in H2CO for different temperatures and H2 abundances.
Results.It is shown that the characteristic conversion time is always much longer than the H2CO lifetime.
Conclusions. Consequently, the conversion probability is zero in gas-phase protostar environments for these non reactive collisions.
Key words: molecular processes / ISM: molecules / stars: formation
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.