Issue |
A&A
Volume 453, Number 1, July I 2006
|
|
---|---|---|
Page(s) | 229 - 240 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20054594 | |
Published online | 09 June 2006 |
Theoretical light curves for deflagration models of type Ia supernova
1
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany e-mail: [seb;fritz;elena;mccg;martin;wfh;stritzin]@mpa-garching.mpg.de
2
ITEP, 117218 Moscow, Russia e-mail: sergei.blinnikov@itep.ru
3
Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
4
Sternberg Astronomical Institute, 119992 Moscow, Russia e-mail: sorokina@sai.msu.su
5
INAF – Osservatorio Astronomico di Torino, Strada dell'Osservatorio 20, 10025 Pino Torinese, Torino, Italy e-mail: travaglio@to.astro.it
6
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark
Received:
26
November
2005
Accepted:
29
January
2006
Aims.We present synthetic bolometric and broad-band UBVRI light curves of SNe Ia for four selected 3D deflagration models of thermonuclear supernovae.
Methods.The light curves are computed with the 1D hydro code stella, which models (multi-group time-dependent) non-equilibrium radiative transfer inside SN ejecta. Angle-averaged results from 3D hydrodynamical explosion simulations with the composition determined in a nucleosynthetic postprocessing step served as the input to the radiative transfer model.
Results.The predicted model light curves do agree
reasonably well with the observed ones for SNe Ia in the range of low
to normal luminosities, although the underlying hydrodynamical
explosion models produced only a modest
amount of radioactive
Ni(i.e. ~0.24–0.42
)
and relatively low kinetic energy in the explosion (less than
erg).
The evolution of predicted B and V fluxes
in the model with a
Nimass of 0.42
follows
the observed decline rate after the maximum very well,
although the behavior of fluxes in other filters deviates somewhat
from observations, and the bolometric decline rate is a bit slow.
The material velocity at the photospheric level is on the order of 104 km s-1 for all models.
Using our models, we check the validity of Arnett's rule, relating the peak
luminosity to the power of the deposited radioactive heating, and we also check
the accuracy of the procedure for extracting the
Nimass
from the observed light curves.
Conclusions.We find that the comparison between theoretical light curves and observations provides a useful tool to validate SN Ia models. The steps necessary for improving the agreement between theory and observations are set out.
Key words: stars: supernovae: general / hydrodynamics / radiative transfer / methods: numerical
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.