Issue |
A&A
Volume 451, Number 3, June I 2006
|
|
---|---|---|
Page(s) | 739 - 746 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20054346 | |
Published online | 04 May 2006 |
The cyclo-synchrotron process and particle heating through the absorption of photons
1
Osservatorio Astronomico di Brera, via Bianchi 46, Merate and via Brera 28, Milano, Italy
2
Toruń Centre for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87100 Toruń, Poland e-mail: kat@astro.uni.torun.pl
3
IASA, Dept. of Physics, Univ. of Athens, Panepistimiopolis, 15784 Zografos, Athens
Received:
12
October
2005
Accepted:
11
January
2006
Aims.We propose a new approximation for the cyclo-synchrotron emissivity of a single electron. In the second part of this work, we discuss a simple application for our approximation, and investigate the heating of electrons through the self-absorption process. Finally, we investigate the self-absorbed part of the spectrum produced by a power-law population of electrons.
Methods.In comparison to earlier approximations, our
formula provides a few significant advantages. Integration of the
emissivity over the whole frequency range, starting from the proper
minimal emitting frequency, gives the correct cooling rate for any
energy particle. Further, the spectrum of the emission is well-approximated over the whole frequency range, even for relatively low
particle energies (), where most of the power is
emitted in the first harmonic. In order to test our continuous
approximation, we compare it with a recently derived approximation
of the first ten harmonics.
Finally, our formula connects relatively smooth to the synchrotron
emission at
.
Results.We show that the self-absorption is a very efficient heating
mechanism for low energy particles, independent of the shape of the
particle distribution responsible for the self-absorbed synchrotron
emission. We find that the energy gains for low energy particles
are always higher than energy losses by cyclo-synchrotron emission. We
show also that the spectral index of the self-absorbed part of the
spectrum at very low frequencies differs significantly from the
well-known standard relation .
Key words: radiation mechanisms: non-thermal / radiation mechanisms: thermal / radiative transfer
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.