Issue |
A&A
Volume 445, Number 2, January II 2006
|
|
---|---|---|
Page(s) | 601 - 616 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20053439 | |
Published online | 16 December 2005 |
Probing turbulence with infrared observations in OMC1
1
Department of Physics and Astronomy, University of Aarhus, 8000 Aarhus C, Denmark e-mail: maikeng@phys.au.dk
2
Observatoire de Paris & Université de Cergy-Pontoise, LERMA & UMR 8112 du CNRS, 92195 Meudon, France
3
Space and Atmospheric Physics, Dept. Physics, Imperial College London, England
Received:
16
May
2005
Accepted:
8
September
2005
A statistical analysis is presented of the turbulent
velocity structure in the Orion Molecular Cloud at scales ranging
from 70 AU to AU. Results are based on IR Fabry-Perot
interferometric observations of shock and photon-excited H2 in
the K-band S(1)
line at 2.121 μm and refer to the dynamical
characteristics of warm perturbed gas. Data consist of a spatially
resolved image
with a measured velocity for each resolution limited region
(
) in the image. The effect of removal of apparent large
scale velocity gradients is discussed and the conclusion drawn that
these apparent gradients represent part of the turbulent cascade and
should remain within the data. Using our full data set, observations
establish that the Larson size-linewidth relation is obeyed to the
smallest scales studied here extending the range of validity of this
relationship by nearly 2
orders of magnitude. The velocity probability distribution function
(PDF) is constructed showing extended exponential wings, providing evidence of intermittency, further supported by
the skewness (third moment) and kurtosis (fourth
moment) of the velocity distribution. Variance and kurtosis of the
PDF of velocity differences are constructed as a function of
lag. The variance shows an
approximate power law dependence on lag, with exponent significantly lower
than the Kolmogorov value, and with deviations below
2000 AU which are attributed to outflows and possibly disk structures associated with low mass star
formation within OMC1. The kurtosis shows strong deviation from a
Gaussian velocity field, providing evidence of velocity correlations at small
lags. Results agree accurately with semi-empirical simulations
in Eggers & Wang (1998).
In addition, 170 individual H2 emitting clumps have been
analysed with sizes between 500
and 2200 AU. These show considerable diversity with regard to PDFs and variance functions (related to second order structure functions) displaying a variety of shapes of the PDF and
different values of the scaling exponent within a restricted spatial
region. However, a region associated with an outflow from a deeply
embedded O-star
shows high values of the scaling exponent of the variance
function, representing a strong segregation of high and low exponent
clumps. Our analysis constitutes the
first characterization of the turbulent velocity field at the scale of
star formation and provide a dataset which models of star-forming
regions should aim to reproduce.
Key words: ISM: individual objects: OMC1 / ISM: kinematics and dynamics / ISM: molecules / shock waves / turbulence / infrared: ISM
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.