Issue |
A&A
Volume 436, Number 2, June III 2005
|
|
---|---|---|
Page(s) | 585 - 600 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20042146 | |
Published online | 30 May 2005 |
Global dynamical evolution of the ISM in star forming galaxies
I. High resolution 3D simulations: Effect of the magnetic field
1
Department of Mathematics, University of Évora, R. Romão Ramalho 59, 7000 Évora, Portugal e-mail: mavillez@galaxy.lca.uevora.pt
2
Institut für Astronomie, Universität Wien, Türkenschanzstr. 17, 1180 Wien, Austria e-mail: breitschwerdt@astro.univie.ac.at
Received:
8
October
2004
Accepted:
31
January
2005
In star forming disk galaxies, matter circulation between
stars and the interstellar gas, and, in particular the energy input by
random and clustered supernova explosions, determine the dynamical
and chemical evolution of the ISM, and hence of the galaxy as a
whole. Using a 3D MHD code with adaptive mesh refinement developed
for this purpose, we have investigated the rôle of magnetized
matter circulation between the gaseous disk and the surrounding
galactic halo. Special emphasis has been put on the effect of the
magnetic field with respect to the volume and mass fractions of the
different ISM “phases”, the relative importance of ram, thermal
and magnetic pressures, and whether the field can prevent matter
transport from the disk into the halo. The simulations were
performed on a grid with an area of 1 kpc2, centered on the
solar circle, extending ±10 kpc perpendicular to the galactic
disk with a resolution as high as 1.25 pc. The simulations were run
for a time scale of 400 Myr, sufficiently long to avoid memory
effects of the initial setup, and to allow for a global dynamical
equilibrium to be reached in case of a constant energy input rate.
The main results of our simulations are: (i) The K gas is mainly concentrated in shock compressed layers,
exhibiting the presence of high density clouds with sizes of a few
parsecs and
K. These structures are formed in
regions where several large scale streams of convergent flow
(driven by SNe) occur. They have lifetimes of a few free-fall
times, are filamentary in structure, tend to be aligned with the
local field and are associated with the highest field strengths;
(ii) the magnetic field has a high variability and it is
largely uncorrelated with the density, suggesting that it is
driven by superalfvenic inertial motions; (iii) ram pressure controls the flow
for
K. For
K magnetic
pressure dominates, while the hot gas (
K) in
contrast is controlled by the thermal pressure, since magnetic
field lines are swept towards the dense compressed walls; (iv) up
to
of the mass in the disk is concentrated in the classical
thermally unstable regime
K with
∼65% of the warm neutral medium (WNM) mass enclosed in the
K gas, consistent with recent
observations; (v) the volume filling
factors of the different temperature regimes depend sensitively on
the existence of the duty cycle between the disk and halo, acting
as a pressure release mechanism for the hot phase in the disk. We
find that in general gas transport into the halo in 3D is not
prevented by an initial disk parallel magnetic field, but only
delayed initially, for as long as it is needed to punch holes into
the thick magnetized gas disk. The mean volume filling factor of
the hot phase in the disk is similar in HD and MHD (the latter with
a total field strength of 4.4 μG) runs, amounting to
17-21% for the Galactic supernova rate.
Key words: magnetohydrodynamics (MHD) / galaxies: ISM / ISM: evolution / ISM: bubbles / ISM: supernova remnants / ISM: structure
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.