Issue |
A&A
Volume 435, Number 3, June I 2005
|
|
---|---|---|
Page(s) | 1123 - 1135 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20042169 | |
Published online | 13 May 2005 |
A model of the Alfvén speed in the solar corona
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: awarmuth@aip.de
Received:
13
October
2004
Accepted:
28
January
2005
We present an analytic model of the Alfvén speed vA in the solar corona. The coronal magnetic field is modeled by a radial component representing the global field and by a dipole representing an active region. The free parameters of the model are constrained by actual observations of solar magnetic fields and coronal electron densities. The coronal magnetic field strength in the quiet Sun is determined by coronal seismology, using EIT waves as proxies for the fast magnetosonic speed , and thus for the magnetic field strength. Depending on the orientation of the dipole, we find local minima of vA (and
) at the coronal base at distances of 0.2–0.3 solar radii from the center of the modelled active region (AR), as well as above the AR at comparable heights. For all dipole orientations, a global maximum is found at 3.5 solar radii. We apply our model to the study of the formation and propagation of coronal shock waves which are observed as flare waves and as type II radio bursts, using a sample of eight solar events. We find that flare waves are initially highly supermagnetosonic (with magnetosonic Mach numbers of
–3). During their propagation, they decelerate until
is reached. This behavior can be explained by a strong shock or large-amplitude simple wave that decays to an ordinary fast magnetosonic wave. The observed starting frequencies and Mach numbers of the associated type II bursts are consistent with the predictions of the model.
Key words: Sun: corona / Sun: magnetic fields / Sun: radio radiation / shock waves
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.