Issue |
A&A
Volume 432, Number 3, March IV 2005
|
|
---|---|---|
Page(s) | 999 - 1012 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20041288 | |
Published online | 07 March 2005 |
XMM-Newton X-ray spectroscopy of the high-mass X-ray binary 4U 1700-37 at low flux
1
Sterrenkundig Instituut “Anton Pannekoek” and Center for High-energy Astrophysics (CHEAF), University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands e-mail: ameer@science.uva.nl
2
Space Research Organization of the Netherlands, National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
3
Integral Science Operations Centre, Astrophysics Div., Science Department, ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands
Received:
13
May
2004
Accepted:
24
November
2004
We present results of a monitoring campaign of the high-mass X-ray
binary system 4U 1700-37/HD 153919, carried out
with XMM-Newton in February 2001. The system was observed at
four orbital phase intervals, covering 37% of one 3.41-day orbit. The
lightcurve includes strong flares, commonly observed in this source. We
focus on three epochs in which the data are not affected by photon pile
up: the eclipse, the eclipse egress and a low-flux interval in the
lightcurve around orbital phase . The
high-energy part of the continuum is modelled as a direct plus a
scattered component, each represented by a power law with identical
photon index (
), but with different absorption
columns. We show that during the low-flux interval the continuum
is strongly reduced, probably due to a reduction of the accretion
rate onto the compact object. A soft excess is detected in all
spectra, consistent with either another continuum component
originating in the outskirts of the system or a blend of
emission lines.
Many fluorescence emission lines from near-neutral species and
discrete recombination lines from He- and H-like species are
detected during eclipse and egress. The fluorescence Fe Kα
line at 6.4 keV is very prominent; a second Kα line is
detected at slightly higher energies (up to 6.7 keV) and a Kβ
line at 7.1 keV. In the low-flux interval the Fe Kα line
at 6.4 keV is strongly (factor ∼30) reduced in strength. In eclipse, the Fe
Kβ/Kα ratio is consistent with a value of 0.13. In
egress we initially measure a higher ratio, which can be explained
by a shift in energy of the Fe K-edge to ~
keV, which is
consistent with moderately ionised iron, rather than neutral iron,
as expected for the stellar wind medium. The detection of
recombination lines during eclipse indicates the presence of an
extended ionised region surrounding the compact object. The
observed increase in strength of some emission lines corresponding
to higher values of the ionisation parameter ξ further
substantiates this conclusion.
Key words: stars: binaries: eclipsing / stars: individual: 4U 1700-37 / stars: individual: HD 153919 / accretion, accretion disks / scattering
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.