Issue |
A&A
Volume 430, Number 3, February II 2005
|
|
---|---|---|
Page(s) | 1005 - 1026 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20040492 | |
Published online | 26 January 2005 |
Rotational evolution of low mass stars: The case of NGC 2264*
1
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: mundt@mpia.de
2
Van Vleck Obs., Wesleyan Univ., Middletown, CT 06459, USA
Received:
22
March
2004
Accepted:
15
September
2004
Our study is based on an extensive photometric monitoring program in the young (2–4 Myr) open
cluster NGC 2264 by Lamm et al. ([CITE]). This program resulted in a sample of 405
periodic variables which are most likely pre-main sequence (PMS) members of the cluster. The
periodic variability of these stars results from the rotational modulation of the light by
stellar spots. In this paper we investigate the rotation period evolution of young stars. This
is done by comparing the period distribution of the older NGC 2264 with that of the younger
Orion Nebular Cluster (ONC, age: ) which is known from the literature.
The age ratio between the two clusters was estimated on the basis of PMS models to be about
. We find that the period distribution of NGC 2264 is similar in form
to the ONC but shifted to shorter periods. In
both clusters the period distribution depends strongly on the mass and it is bimodal for higher
mass stars with
while it is unimodal for lower mass stars with
.
In addition the lower mass stars rotate much faster on average than the higher mass stars.
Quantitative comparison between the period distributions of both clusters suggests that a large
fraction (about
) of stars have spun up from the age of the ONC to the age of NGC 2264.
Based on this estimate and the estimated age ratio between the two clusters we find that the
average spin up by a factor of 1.5-1.8 from the age of the ONC to the age of NGC 2264 is
consistent with a decreasing stellar radius and conservation of angular momentum, for most stars.
However, within NGC 2264 we did not find any significant spin up from the younger to older stars
in the cluster. We also found indications for some ongoing disk-locking in NGC 2264, in particular for
the higher mass stars. Our analysis of the period distribution suggests that about
of the
higher mass stars in NGC 2264 could be magnetically locked into co-rotation with their inner disk.
In the case of the lower mass stars, disk-locking seems to be less important for the rotational
evolution of the stars. This interpretation is supported by the analysis of the stars'
emission. This analysis indicates that the locking period of the higher mass stars is about
.
For the lower mass stars this analysis indicates a locking period of about 2–3 days. We argue that
the latter stars are probably not “completely” locked to their disk and propose an evolution
scenario for these stars which we call “moderate angular momentum loss”. In this scenario angular
momentum is continuously removed from the stars but at a rate too low to lock the stars with a constant
rotation period.
We have done a detailed comparison with the recently published rotational period
study of NGC 2264 of Makidon et al. (2004). Even though their obtained period distribution
of their quality 1 data on NGC 2264 is indistinguishable within the statistical errors from ours,
we come to quite different conclusions about the interpretation.
One major reason for these discrepancies is probably the large
inhomogeneity of the “whole” Orion region with which Makidon et al. (2004) compare their NGC 2264
data, while we compare our NGC 2264 data only with the ONC, which is the youngest and most homogeneous
cluster of the Orions OBI association.
Key words: Galaxy: open clusters and associations: individual: NGC 2264 / Galaxy: open clusters and associations: individual: ONC / stars: pre-main sequence / stars: rotation / stars: formation
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.