Issue |
A&A
Volume 422, Number 3, August II 2004
|
|
---|---|---|
Page(s) | 1073 - 1084 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20034207 | |
Published online | 16 July 2004 |
Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere
1
Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, 8042 Graz, Austria e-mail: maxim.khodachenko;helmut.rucker@oeaw.ac.at
2
Physics Department, University of Warwick, Coventry, CV4 7AL, UK e-mail: t.d.arber@warwick.ac.uk
3
Institute for Geophysics, Astrophysics and Meteorology, Universtitätsplatz 5, 8010 Graz, Austria e-mail: arnold.hanslmeier@uni-graz.at
Received:
18
August
2003
Accepted:
6
April
2004
Magnetohydrodynamic (MHD) waves are widely considered as a possible source of heating for various parts of the outer solar atmosphere. Among the main energy dissipation mechanisms which convert the energy of damped MHD waves into thermal energy are collisional dissipation (resistivity) and viscosity. The presence of neutral atoms in the partially ionized plasmas of the solar photosphere, chromosphere and prominences enhances the efficiency of both these energy dissipation mechanisms. A comparative study of the efficiency of MHD wave damping in solar plasmas due to collisional and viscous energy dissipation mechanisms is presented here. The damping rates are taken from Braginskii [CITE] and applied to the VAL C model of the quiet Sun (Vernazza et al. [CITE]). These estimations show which of the mechanisms are dominant in which regions. In general the correct description of MHD wave damping requires the consideration of all energy dissipation mechanisms via the inclusion of the appropriate terms in the generalized Ohm's law, the momentum, energy and induction equations. Specific forms of the generalized Ohm's Law and induction equation are presented that are suitable for regions of the solar atmosphere which are partially ionised.
Key words: magnetohydrodynamics (MHD) / waves / Sun: atmosphere / Sun: photosphere / Sun: chromosphere
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.