Issue |
A&A
Volume 420, Number 3, June IV 2004
|
|
---|---|---|
Page(s) | 1009 - 1023 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20034546 | |
Published online | 04 June 2004 |
Radiative transfer models of non-spherical prestellar cores
1
Department of Physics & Astronomy, Cardiff University, PO Box 913, 5 The Parade, Cardiff CF24 3YB, Wales, UK
2
CEA, DSM, DAPNIA, Service d' Astrophysique, C.E. Saclay, 91191 Gif-sur-Yvette Cedex, France
Corresponding author: D. Stamatellos, D.Stamatellos@astro.cf.ac.uk
Received:
21
October
2003
Accepted:
8
March
2004
We present 2D Monte Carlo radiative transfer simulations of
prestellar cores. We consider two types of asymmetry: disk-like asymmetry, in which the core is denser towards the
equatorial plane than towards the poles; and axial asymmetry,
in which the core is denser towards the south pole than the north
pole. In both cases the degree of asymmetry is characterized by
the ratio e between the maximum optical depth from the centre
of the core to its surface and the minimum optical depth from the
centre of the core to its surface. We limit our treatment here
to mild asymmetries with and
. We consider both
cores which are exposed directly to the interstellar radiation
field and cores which are embedded inside molecular clouds.
The SED of a core is essentially independent
of the viewing angle, as long as the core is optically thin. However,
the isophotal maps depend strongly on the viewing angle. Maps at
wavelengths longer than the peak of the SED (e.g. 850 μm)
essentially trace the column-density. This is because at long
wavelengths the emissivity is only weakly dependent on temperature,
and the range of temperature in a core is small (typically
). Thus, for instance, cores with
disk-like asymmetry appear elongated when mapped at 850
μm from close to the equatorial plane. However, at
wavelengths near the peak of the SED (e.g. 200 μm), the
emissivity is more strongly dependent on the temperature, and
therefore, at particular viewing angles, there are
characteristic features which reflect a more complicated
convolution of the density and temperature fields within
the core.
These characteristic features are on scales
to
of the overall core size, and so high resolution observations are
needed to observe them. They are also weaker if the core is embedded in a
molecular cloud (because the range of temperature within the core
is then smaller), and so high sensitivity is needed to detect them.
Herschel, to be launched in 2007, will in principle provide
the necessary resolution and sensitivity at 170 to 250 μm.
Key words: stars: formation / ISM: clouds / ISM: structure / methods: numerical / radiative transfer
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.