Issue |
A&A
Volume 419, Number 2, May IV 2004
|
|
---|---|---|
Page(s) | 771 - 776 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361:20034093 | |
Published online | 03 May 2004 |
Semi-classical collisional functions in a strongly correlated plasma
1
Groupe de Recherche en Physique Atomique et Astrophysique, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia
2
Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique, UMR CNRS 8112 – LERMA, Observatoire de Paris, Section de Meudon, 92195 Meudon Cedex, France
Corresponding author: S. Sahal-Bréchot, sylvie.sahal-brechot@obspm.fr
Received:
18
July
2003
Accepted:
2
February
2004
Collisions between atoms (or ions) and electrons play
an important role in the interpretation of line
spectra and for the modelling of stellar interiors. Plasma
shielding effects due to electron and ion correlations are not
negligible in the physical conditions of white dwarf atmospheres,
owing to their high density. They also play a role in cool stars
and for atomic transitions that are
quasi-degenerate. In the standard formalism of Stark impact
broadening of spectral lines and of cross sections, the
electrostatic Coulomb potential is used to describe the
interaction between the perturbing electrons and the emitting
atom. Electronic correlations (screening effects) are usually
taken into account by introducing a cut-off in the interaction when
the electron-atom distance exceeds the Debye radius . A
more consistent treatment to describe collective effects is the
Debye-Hückel potential: the two-particle Coulomb field is
shielded by the ensemble of the surrounding electrons. This is a
good approximation only for high temperature and low density
plasmas (weakly non-ideal plasmas), while for strongly non-ideal
plasmas, the Coulomb cut-off potential or the ion sphere
potential are more appropriate. These potentials, which can be
written as the Coulomb potential with two correcting terms, are
widely used in the literature.
In this paper, we investigate the ion sphere
model to describe the electron atom interaction in a strongly
coupled plasma. New semi-classical collisional functions are
derived for both the transition probability and the cross section,
using the classical path approximation.
Key words: atomic processes
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.