Issue |
A&A
Volume 419, Number 1, May III 2004
|
|
---|---|---|
Page(s) | 335 - 343 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20040070 | |
Published online | 23 April 2004 |
Wind accretion in binary stars
I. Mass accretion ratio
1
Department of Earth and Planetary Sciences, Kobe University, Rokko-dai 1-1, Nada-ku, Kobe 657-8501, Japan e-mail: tmatsuda@kobe-u.ac.jp
2
IBM Japan Ltd., Yamato-shi, Kanagawa 242-8502, Japan
3
Department of Earth Science and Astronomy, College of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan e-mail: hachisu@chianti.c.u-tokyo.ac.jp
4
Royal Observatory of Belgium, Av. Circulaire 3, 1180 Brussels, Belgium
5
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85738 Garching, Germany
Corresponding author: H. M. J. Boffin, hboffin@eso.org
Received:
12
April
2002
Accepted:
16
February
2004
Three-dimensional hydrodynamic calculations are performed in order to
investigate mass transfer in a close binary system, in which one
component undergoes mass loss through a wind.
The mass ratio is assumed to be unity. The radius of the
mass-losing star is taken to be about a quarter of the separation between
the two stars. Calculations are performed for gases with a ratio of
specific heats and
. Mass loss is assumed to be
thermally driven so that the other parameter is the sound speed of the
gas on the mass-losing star.
Here, we focus our attention on two features: flow patterns and mass
accretion ratio, which we define as the ratio of the mass accretion
rate onto the companion,
, to the mass loss rate
from the mass-losing primary star,
. We characterize
the flow by the mean normal velocity of the wind on the critical Roche surface
of the mass-losing star, VR. When
,
where A and Ω are the separation between the two stars and the
angular orbital frequency of the binary, respectively, we obtain
Roche-lobe over-flow (RLOF), while for
we observe
wind accretion.
We find very complex flow patterns in between these
two extreme cases. We derive an empirical formula of the mass accretion
ratio as
in the low velocity regime
and
in the high velocity regime.
Key words: accretion, accretion disks / hydrodynamics / stars: binaries: general
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.