Issue |
A&A
Volume 419, Number 1, May III 2004
|
|
---|---|---|
Page(s) | 203 - 213 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20034318 | |
Published online | 23 April 2004 |
Constraints in the circumstellar density distribution of massive Young Stellar Objects
1
Physics and Astronomy Department, University of Leeds, Leeds LS2 9JT, UK
2
Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands
3
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
4
Dept. of Physical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
Corresponding author: C. Alvarez, alvarez@mpia-hd.mpg.de
Received:
12
September
2003
Accepted:
23
January
2004
We use a Monte Carlo code to generate synthetic near-IR reflection
nebulae that resemble those (normally associated with a bipolar
outflow cavity) seen towards massive young stellar objects (YSOs).
The 2D axi-symmetric calculations use an analytic expression for a
flattened infalling rotating envelope with a bipolar cavity
representing an outflow. We are interested in which aspects of the
circumstellar density distribution can be constrained by
observations of these reflection nebulae. We therefore keep
the line of sight optical depth constant in the model grid, as this
is often constrained independently by observations.
It is found that envelopes with density distributions corresponding to
mass infall rates of ~10-4 (for an envelope
radius of 4700 AU) seen at an inclination
angle of ∼
approximately reproduce the morphology and
extension of the sub-arcsecond nebulae observed in massive YSOs.
Based on the flux ratio between the approaching and receding lobe of
the nebula, we can constrain the system inclination angle. The
cavity opening angle is well constrained from the nebula opening
angle. Our simulations indicate that to constrain the outflow cavity shape
and the degree of flattening in the envelope, near-IR imaging with
higher resolution and dynamic range than speckle imaging in
4 m-class telescopes is
needed. The radiative transfer code is also used to simulate the
near-IR sub-arcsecond nebula seen in Mon R2 IRS3. We find indications of a
shallower opacity law in this massive YSO than in the interstellar
medium, or possibly a sharp drop in the envelope density distribution
at distances of ~1000 AU from the illuminating source.
Key words: scattering / stars: formation / techniques: high angular resolution / radiative transfer / stars: winds, outflow
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.