Issue |
A&A
Volume 414, Number 2, February I 2004
|
|
---|---|---|
Page(s) | 531 - 544 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20031659 | |
Published online | 19 January 2004 |
Some empirical estimates of the H2 formation rate in photon-dominated regions
1
Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, 50125 Firenze, Italy
2
Institut d'Astrophysique Spatiale, Université Paris-Sud, 91405 Orsay Cedex, France
Corresponding author: E. Habart, habart@arcetri.astro.it
Received:
20
December
2002
Accepted:
25
July
2003
We combine recent ISO observations of the vibrational
ground state lines of H2 towards Photon-Dominated Regions
(PDRs) with observations of vibrationally excited states
made with ground–based telescopes in order to constrain the
formation rate of H2 on grain surfaces under the physical
conditions in the layers responsible for H2 emission. We
briefly review the data available for five nearby PDRs. We
use steady state PDR models in order to examine the sensitivity
of different H2 line ratios to the H2 formation rate Rf.
We show that the ratio of the 0–0 S(3) to the 1–0 S(1) line increases
with Rf but that one requires independent estimates of the
radiation field incident upon the PDR and the density in order
to infer Rf from the H2 line data.
We confirm earlier work by [CITE] on the Oph W PDR
which showed that an H2 formation rate higher than
the standard value of cm3 s-1
inferred from UV observations of
diffuse clouds is needed to explain
the observed H2 excitation.
From comparison of the ISO and ground-based data, we find
that moderately excited PDRs such as Oph W, S140 and IC 63 require an H2 formation rate of about five times the
standard value whereas the data for PDRs with a higher incident radiation field such as NGC 2023 and the Orion Bar can be explained with the standard value of Rf.
We compare also the H2 1–0 S(1) line intensities with the emission
in PAH features and find a rough scaling of the ratio
of these quantities with the ratio of
local density to radiation field. This suggests but does not prove
that formation of H2 on PAHs is important in PDRs.
We also consider some empirical models of the H2 formation process
with the aim of explaining these results. Here we consider both
formation on classical grains of size roughly 0.1 μm and on
very small (~10 Å) grains by either direct recombination from the
gas phase (Eley–Rideal mechanism) or recombination of physisorbed
H atoms with atoms in a chemisorbed site. We conclude that
indirect chemisorption where a physisorbed H-atom scans the grain
surface before recombining with a chemisorbed H-atom is most
promising in PDRs. Moreover small grains which dominate
the total grain surface and spend most of their time at
relatively low (below 30 K for χ ≤ 3000) temperatures may be the most promising
surface for forming H2 in PDRs.
Key words: ISM: clouds / ISM: dust, extinction / atomic processes / molecular processes / radiative transfer
© ESO, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.