Issue |
A&A
Volume 409, Number 3, October III 2003
|
|
---|---|---|
Page(s) | 941 - 951 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20031102 | |
Published online | 17 November 2003 |
Star forming cores in L 1251: Maps and molecular abundances
1
Onsala Space Observatory, 439 92 Onsala, Sweden
2
Astronomical Observatory, Volgina 7, 11160 Belgrade 74, Serbia, Serbia and Montenegro
3
Helsinki University Observatory, Tähtitorninmäki, PO Box 14, SF-00014 University of Helsinki, Finland
Corresponding author: S. Nikolic, silvana@oso.chalmers.se
Received:
29
April
2003
Accepted:
17
July
2003
We have mapped the dense parts of the cometary–shaped, star–forming dark
cloud L 1251 in the rotational lines of HCN, HNC, HCO+ and CS at 3 mm, and
observed selected positions in SO, CH3CCH and rare isotopomers of the mapped
molecules. Using the CS line we detected 15 cores with sizes of
~0.1–0.3 pc. New estimates of the fraction of dense gas in the cores
yield a revised average SFE of ~10%. Although 3 times lower than the
previous estimate, this high SFE still points to externally triggered star
formation in the cloud. Around IRAS 22343+7501, the source proposed to drive a
previously detected extended CO outflow, our data suggest the existence of
either a rotating HCO+ disk or a dense outflow with a dynamical age of
~ years. A stability check seems to rule out the disk
interpretation. We suggest that both continuum sources of Beltrán et al. are
protostars each driving its own outflow.
Using methyl acetylene as a
thermometer we find indications that at lower temperatures the A and E
species are defined by different partition functions. A “temperature
gradient” was found in the cloud, with the highest temperature detected in the
head region. The column density ratios derived from these observations and the
previously published NH3 data show in general little variations, but for two
exceptional locations. One of these is in the tip of the “head” with high
relative SO and NH3 abundances, and the other is in the “tail” with low CO
and HCO+ column densities with respect to HNC, HCN and NH3. In the first
case the abundance ratios can probably be explained by an advanced stage of
chemical evolution assisted by an elevated temperature. The second location is
likely to be an example of CO and HCO+ depletion, and the implication is
that also HNC and HCN belong to the molecules which are more resistant against
freezing–out than CO and HCO+.
Key words: ISM: abundances / ISM: clouds / ISM: molecules / ISM: individual objects: L 1251
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.