Issue |
A&A
Volume 395, Number 1, November III 2002
|
|
---|---|---|
Page(s) | 321 - 338 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361:20021071 | |
Published online | 29 October 2002 |
Gravitational collapse of nonsingular logatropic spheres
1
Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas 1020A, Venezuela e-mail: lsigalot@cassini.ivic.ve e-mail: esira@hubble.ivic.ve
2
Dipartimento di Fisica Galileo Galilei, Università di Padova, via Marzolo n. 8, 35131 Padova, Italy e-mail: defelice@pd.infn.it
Corresponding author: L. Di G. Sigalotti, lsigalot@cassini.ivic.ve
Received:
2
May
2002
Accepted:
19
July
2002
We present the results of high-resolved, hydrodynamic calculations
of the spherical gravitational collapse and subsequent accretion of nonsingular
subcritical and critical logatropes, starting with initial configurations
close to hydrostatic equilibrium. Two sequences of models with varying masses and
the same central temperature
K are defined, which differ only in the
fiducial value of the truncation pressure (
cm-3 K and
cm-3 K). In all cases, we follow the calculations
until the central protostar has accreted 99% of the total available mass. Thus,
the models may be indicative of early evolution from the Class 0 to the Class I
protostellar phase. We find that the approach to the singular density profile is
never entirely subsonic. In the lower ps sequence, about 6% of the mass
collapses supersonically in a
sphere, while only ∼0.02% behaves
this way in a critical (
92.05
) logatrope. In the high ps
sequence the same trend is observed, with ∼0.7% of the mass now infalling
supersonically at the time of singularity formation in a
sphere.
Immediately after singularity formation, the accretion rate rises steeply in all
cases, reaching a maximum value when the central protostar has accreted ∼40%
of its final mass. Thereafter, it decreases monotonically for the remainder
of the evolution. Our models predict peak values of
as
high as ∼
yr-1 for logatropes close to the
critical mass. In contrast, a subcritical
logatrope reaches a maximum
value of ∼
yr-1 for the lower ps sequence
compared to ~
yr-1 for the higher ps case.
The results also imply that the accretion lifetimes are longer in logatropes with
lower ps, consistent with the observational evidence that star formation
in clumped regions occurs on shorter timescales compared to more isolated
environments.
Key words: hydrodynamics / methods: numerical / stars: formation / circumstellar matter
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.