Issue |
A&A
Volume 394, Number 2, November I 2002
|
|
---|---|---|
Page(s) | 375 - 393 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361:20021032 | |
Published online | 15 October 2002 |
The mass profile of A1413 observed with
–
:
Implications for the M–T relation
CEA/Saclay, Service d'Astrophysique, L'Orme des Merisiers, Bât. 709, 91191 Gif-sur-Yvette Cedex, France
Corresponding author: G. W. Pratt, gwp@discovery.saclay.cea.fr
Received:
27
May
2002
Accepted:
11
July
2002
We present an XMM-Newton observation of A1413, a hot () galaxy cluster at
. We construct gas and
temperature profiles over the radial range up to ~1700 kpc.
This radius corresponds to a density contrast
with
respect to the critical density at the redshift of the cluster, or
equivalently ~
. The gas distribution is well
described by a β model in the outer regions, but is more
concentrated in the inner ~
. We introduce a new
parameterisation for the inner regions, which allows a steeper gas
density distribution. The radial temperature profile does not exhibit
a sharp drop, but rather declines gradually towards the outer regions,
by ~
between
and
. The projected
temperature profile is well described by a polytropic model with
. We find that neither projection nor PSF
effects change substantially the form of the temperature profile.
Assuming hydrostatic equilibrium and spherical symmetry, we use the
observed temperature profile and the new parametric form for the gas
density profile to produce the total mass distribution of the cluster.
The mass profile is remarkably well fitted with the Moore
et al. ([CITE]) parameterisation, implying a very centrally
peaked matter distribution. The concentration parameter is in the
range expected from numerical simulations. There are several
indications that beyond a density contrast
, the gas
may no longer be in hydrostatic equilibrium. There is an offset with
respect to adiabatic numerical simulations in the virialised part of
the cluster, in the sense that the predicted mass for the cluster
temperature is ~
too high. The gas distribution is peaked
in the centre primarily as a result of the cusp in the dark matter
profile. The X-ray gas to total mass ratio rises with increasing
radius to
. These data strongly support the validity of
the current approach for the modeling of the dark matter collapse, but
confirm that understanding the gas specific physics is essential.
Key words: galaxies: clusters: individual: A1413 / galaxies: clusters: general / galaxies: intergalactic medium / cosmology: observations / cosmology: dark matter / X-rays: galaxies: clusters
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.