Issue |
A&A
Volume 392, Number 3, September IV 2002
|
|
---|---|---|
Page(s) | 921 - 929 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20020954 | |
Published online | 09 September 2002 |
IRC+10 216 in action: Present episode of intense mass-loss reconstructed by two-dimensional radiative transfer modeling
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: sasha, khh, weigelt@mpifr-bonn.mpg.de
Corresponding author: A. B. Men'shchikov, sasha@mpifr-bonn.mpg.de
Received:
27
May
2002
Accepted:
20
June
2002
We present two-dimensional (2D) radiative transfer modeling of IRC+10 216 at
selected moments of its evolution in 1995–2001, which correspond to three
epochs of our series of 8 near-infrared speckle images (Osterbart et al. [CITE]; Weigelt et al. [CITE]). The high-resolution images obtained over the last 5.4 years
revealed the dynamic evolution of the subarcsecond dusty environment of IRC+10 216
and our recent time-independent 2D radiative transfer modeling reconstructed
its physical properties at the single epoch of January 1997
(Men'shchikov et al. [CITE]). Having documented the complex changes in the
innermost bipolar shell of the carbon star, we incorporate the evolutionary
constraints into our new modeling to understand the physical reasons for the
observed changes. The new calculations show that our previous static model is
consistent with the brightness variations seen in the near-infrared images,
implying that during the last 50 years, we have been witnessing an episode of a
steadily increasing mass loss from the central star, from
yr-1 to the rate of
yr-1 in 2001. The rapid increase of the mass loss of IRC+10 216 and
continuing time-dependent dust formation and destruction caused the observed
displacement of the initially faint components C and D and of the bright cavity
A from the star which has almost disappeared in our images in 2001. Increasing
dust optical depths are causing strong backwarming that leads to higher
temperatures in the dust formation zone, displacing the latter outward with a
velocity
km s-1 due to the evaporation of the recently
formed dust grains. This self-regulated shift of the dust density peak in the
bipolar shell mimics a rapid radial expansion, whereas the actual outflow has
probably a lower speed
km s-1. The model
predicts that the star will remain obscured until
starts to drop back
to lower values in the dust formation zone; in a few years from that moment, we
could be witnessing the star reappearing.
Key words: radiative transfer / circumstellar matter / stars: individual: IRC+10 216 / stars: mass-loss / stars: AGB and post-AGB / infrared: stars
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.