Issue |
A&A
Volume 368, Number 2, March III 2001
|
|
---|---|---|
Page(s) | 497 - 526 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20000554 | |
Published online | 15 March 2001 |
Structure and physical properties of the rapidly evolving dusty envelope of IRC + 10216 reconstructed by detailed two-dimensional radiative transfer modeling
1
Stockholm Observatory, 133 36 Saltsjöbaden, Sweden
2
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: bloecker@mpifr-bonn.mpg.de; osterbart@mpifr-bonn.mpg.de; weigelt@mpifr-bonn.mpg.de
3
Special Astrophysical Observatory, Nizhnij Arkhyz, 357147 Karachaevo-Cherkesia, Russia e-mail: balega@sao.ru
Corresponding author: A. B. Men'shchikov, sasha@astro.su.se
Received:
13
July
2000
Accepted:
12
December
2000
We present the first detailed, two-dimensional radiative transfer
model of the dusty envelope around the carbon star IRC + 10216.
Our goal was to find a self-consistent model of the star and its
envelope which takes into account as many observational constraints as
possible. The model reproduces very well the entire beam-matched
spectral energy distribution of IRC + 10216 from optical to centimeter
wavelengths (at several phases of stellar luminosity), observed
intensity profiles of the object at 1.25, 2.2, 10.5, 50, 100 m,
and 1.3 mm, a 10.5
m lunar occultation intensity profile, our
high-resolution
, K, and
bispectrum
speckle-interferometry images, and visibilities in
, and
N bands.
For the adopted distance of 130 pc, the model of IRC + 10216 implies that
the object changes its luminosity between 13 000 and 5200
, its
effective temperature between 2800 and 2500 K, and its radius between 500
and 390
. There is a dense non-spherical dust shell around the star,
with outflow cavities at position angle PA
20°. The
southern cavity with a full opening angle of 36° is
tilted toward us by 40° from the plane of sky, causing the
observed bipolar appearance of the object on a subarcsecond scale.
If the envelope's outflow velocity of 15 km s-1 applies to the
material making up the dense core, then just
15 years ago the
star was losing mass at a rate of
yr-1.
Dust exists in the envelope of IRC + 10216 everywhere from the stellar
photosphere up to a distance of 3 pc from the star. The total mass of
the envelope lost by the central star is 3
and the dust-to-gas
mass ratio is 0.004. The total optical depth
toward the star
in the visual is 40, in the polar cavities it is 10.
The innermost parts of the envelope are optically thick even at
10.7
m due to a strong resonance absorption of silicon carbide
grains at that wavelength. In addition to SiC dust, the model contains
inhomogeneous grains made of a mixture of SiC and incompletely
amorphous carbon with thin [ Mg0.5Fe0.5] S mantles. This is the simplest dust
mixture required to fit all observations of IRC + 10216 and to correctly
interpret the well-known 11.3
m and 27
m emission bands.
The dust model found in this study can also be successfully applied to
many other carbon stars exhibiting broad emission features in the
10.3-12.6
m and 25-37
m wavelength regions.
An important and firm result of our modeling is that the brightest
compact peak observed in IRC + 10216
is not the direct light from the
underlying central star. In contrast to previous suggestions, the
brightest southern component, labeled A in our high-resolution
near-infrared images [CITE], is only the radiation emitted
and scattered in the optically thinner southern cavity of the bipolar
dense shell moving away from the central star. The carbon star is at
the position of the fainter component B in our H and K images,
which is 0 fraction of arcsecond21 away from A along the symmetry axis. Direct
stellar light (component B) is not seen at all in the Hubble Space
Telescope 0.8
m and 1.1
m images, being absorbed by the
dense dusty material. The even fainter components C and D in the H
and K images are probably due to smaller deviations of the dense
shell from the spherical shape. IRC + 10216 seems to have entered a phase
immediately before moving off the asymptotic giant branch and started
developing asymmetries in its envelope.
© ESO, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.